lab1_June_5 / app.py
Rohit Rajpoot
Update app.py
fe86603
import os
os.environ["MPLCONFIGDIR"] = "/tmp" # Prevent matplotlib config errors
os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Title and UI
st.set_page_config(page_title="DeepSeek-R1 Chatbot", page_icon="πŸ€–")
st.title("🧠 DeepSeek-R1 CPU Chatbot")
st.caption("Running entirely on CPU using Hugging Face Transformers")
# Load the model and tokenizer
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
return tokenizer, model
tokenizer, model = load_model()
# Prompt input
user_input = st.text_area("πŸ“₯ Enter your prompt here:", "Explain what a neural network is.")
if st.button("🧠 Generate Response"):
with st.spinner("Thinking..."):
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.markdown("### πŸ€– Response:")
st.write(response)