Spaces:
Runtime error
Runtime error
import os | |
os.environ["MPLCONFIGDIR"] = "/tmp" # Prevent matplotlib config errors | |
os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false" | |
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true" | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Title and UI | |
st.set_page_config(page_title="DeepSeek-R1 Chatbot", page_icon="π€") | |
st.title("π§ DeepSeek-R1 CPU Chatbot") | |
st.caption("Running entirely on CPU using Hugging Face Transformers") | |
# Load the model and tokenizer | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base") | |
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
# Prompt input | |
user_input = st.text_area("π₯ Enter your prompt here:", "Explain what a neural network is.") | |
if st.button("π§ Generate Response"): | |
with st.spinner("Thinking..."): | |
inputs = tokenizer(user_input, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=100) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.markdown("### π€ Response:") | |
st.write(response) |