rohansampath's picture
Update app.py with a basic demonstration of loading Llama-3.1-instruct and running a simple eval on some Math
3195f7f verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import evaluate
import re
import matplotlib
matplotlib.use('Agg') # for non-interactive envs
import matplotlib.pyplot as plt
import io
import base64
# ---------------------------------------------------------------------------
# 1. Define model name and load model/tokenizer
# ---------------------------------------------------------------------------
model_name = "meta-llama/Llama-3.2-1B-Instruct" # fictional placeholder
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# ---------------------------------------------------------------------------
# 2. Define a tiny "dataset" for demonstration
# In reality, you'll load a real dataset from HF or custom code.
# ---------------------------------------------------------------------------
test_data = [
{"question": "What is 2+2?", "answer": "4"},
{"question": "What is 3*3?", "answer": "9"},
{"question": "What is 10/2?", "answer": "5"},
]
# ---------------------------------------------------------------------------
# 3. Load a metric (accuracy) from Hugging Face evaluate library
# ---------------------------------------------------------------------------
accuracy_metric = evaluate.load("accuracy")
# ---------------------------------------------------------------------------
# 4. Inference helper functions
# ---------------------------------------------------------------------------
def generate_answer(question):
"""
Generates an answer to the given question using the loaded model.
"""
# Simple prompt
prompt = f"Question: {question}\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=30,
temperature=0.0, # deterministic
)
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
return text_output
def parse_answer(model_output):
"""
Heuristic to extract the final numeric answer from model's text.
You can customize this regex or logic as needed.
"""
# Example: find digits (possibly multiple, but we keep the first match)
match = re.search(r"(\d+)", model_output)
if match:
return match.group(1)
# fallback to entire text if no digits found
return model_output.strip()
# ---------------------------------------------------------------------------
# 5. Evaluation routine
# ---------------------------------------------------------------------------
def run_evaluation():
predictions = []
references = []
for sample in test_data:
question = sample["question"]
reference_answer = sample["answer"]
# Model inference
model_output = generate_answer(question)
predicted_answer = parse_answer(model_output)
predictions.append(predicted_answer)
references.append(reference_answer)
# Normalize answers (simple: just remove spaces/punctuation, lower case)
def normalize_answer(ans):
return ans.lower().strip()
norm_preds = [normalize_answer(p) for p in predictions]
norm_refs = [normalize_answer(r) for r in references]
# Compute accuracy
results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs)
accuracy = results["accuracy"]
# Create a simple bar chart: correct vs. incorrect
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
incorrect_count = len(test_data) - correct_count
fig, ax = plt.subplots()
ax.bar(["Correct", "Incorrect"], [correct_count, incorrect_count], color=["green", "red"])
ax.set_title("Evaluation Results")
ax.set_ylabel("Count")
ax.set_ylim([0, len(test_data)])
# Convert the plot to a base64-encoded PNG for Gradio display
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
plt.close(fig)
data = base64.b64encode(buf.read()).decode("utf-8")
image_url = f"data:image/png;base64,{data}"
# Return text and the plot
return f"Accuracy: {accuracy:.2f}", image_url
# ---------------------------------------------------------------------------
# 6. Gradio App
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Simple Math Evaluation with 'Llama 3.2'")
eval_button = gr.Button("Run Evaluation")
output_text = gr.Textbox(label="Results")
output_plot = gr.HTML(label="Plot")
eval_button.click(
fn=run_evaluation,
inputs=None,
outputs=[output_text, output_plot]
)
demo.launch()