Spaces:
Runtime error
Runtime error

Update app.py with a basic demonstration of loading Llama-3.1-instruct and running a simple eval on some Math
3195f7f
verified
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import evaluate | |
import re | |
import matplotlib | |
matplotlib.use('Agg') # for non-interactive envs | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
# --------------------------------------------------------------------------- | |
# 1. Define model name and load model/tokenizer | |
# --------------------------------------------------------------------------- | |
model_name = "meta-llama/Llama-3.2-1B-Instruct" # fictional placeholder | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# --------------------------------------------------------------------------- | |
# 2. Define a tiny "dataset" for demonstration | |
# In reality, you'll load a real dataset from HF or custom code. | |
# --------------------------------------------------------------------------- | |
test_data = [ | |
{"question": "What is 2+2?", "answer": "4"}, | |
{"question": "What is 3*3?", "answer": "9"}, | |
{"question": "What is 10/2?", "answer": "5"}, | |
] | |
# --------------------------------------------------------------------------- | |
# 3. Load a metric (accuracy) from Hugging Face evaluate library | |
# --------------------------------------------------------------------------- | |
accuracy_metric = evaluate.load("accuracy") | |
# --------------------------------------------------------------------------- | |
# 4. Inference helper functions | |
# --------------------------------------------------------------------------- | |
def generate_answer(question): | |
""" | |
Generates an answer to the given question using the loaded model. | |
""" | |
# Simple prompt | |
prompt = f"Question: {question}\nAnswer:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=30, | |
temperature=0.0, # deterministic | |
) | |
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return text_output | |
def parse_answer(model_output): | |
""" | |
Heuristic to extract the final numeric answer from model's text. | |
You can customize this regex or logic as needed. | |
""" | |
# Example: find digits (possibly multiple, but we keep the first match) | |
match = re.search(r"(\d+)", model_output) | |
if match: | |
return match.group(1) | |
# fallback to entire text if no digits found | |
return model_output.strip() | |
# --------------------------------------------------------------------------- | |
# 5. Evaluation routine | |
# --------------------------------------------------------------------------- | |
def run_evaluation(): | |
predictions = [] | |
references = [] | |
for sample in test_data: | |
question = sample["question"] | |
reference_answer = sample["answer"] | |
# Model inference | |
model_output = generate_answer(question) | |
predicted_answer = parse_answer(model_output) | |
predictions.append(predicted_answer) | |
references.append(reference_answer) | |
# Normalize answers (simple: just remove spaces/punctuation, lower case) | |
def normalize_answer(ans): | |
return ans.lower().strip() | |
norm_preds = [normalize_answer(p) for p in predictions] | |
norm_refs = [normalize_answer(r) for r in references] | |
# Compute accuracy | |
results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs) | |
accuracy = results["accuracy"] | |
# Create a simple bar chart: correct vs. incorrect | |
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs)) | |
incorrect_count = len(test_data) - correct_count | |
fig, ax = plt.subplots() | |
ax.bar(["Correct", "Incorrect"], [correct_count, incorrect_count], color=["green", "red"]) | |
ax.set_title("Evaluation Results") | |
ax.set_ylabel("Count") | |
ax.set_ylim([0, len(test_data)]) | |
# Convert the plot to a base64-encoded PNG for Gradio display | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png") | |
buf.seek(0) | |
plt.close(fig) | |
data = base64.b64encode(buf.read()).decode("utf-8") | |
image_url = f"data:image/png;base64,{data}" | |
# Return text and the plot | |
return f"Accuracy: {accuracy:.2f}", image_url | |
# --------------------------------------------------------------------------- | |
# 6. Gradio App | |
# --------------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Simple Math Evaluation with 'Llama 3.2'") | |
eval_button = gr.Button("Run Evaluation") | |
output_text = gr.Textbox(label="Results") | |
output_plot = gr.HTML(label="Plot") | |
eval_button.click( | |
fn=run_evaluation, | |
inputs=None, | |
outputs=[output_text, output_plot] | |
) | |
demo.launch() | |