import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM import evaluate import re import matplotlib matplotlib.use('Agg') # for non-interactive envs import matplotlib.pyplot as plt import io import base64 # --------------------------------------------------------------------------- # 1. Define model name and load model/tokenizer # --------------------------------------------------------------------------- model_name = "meta-llama/Llama-3.2-1B-Instruct" # fictional placeholder tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # --------------------------------------------------------------------------- # 2. Define a tiny "dataset" for demonstration # In reality, you'll load a real dataset from HF or custom code. # --------------------------------------------------------------------------- test_data = [ {"question": "What is 2+2?", "answer": "4"}, {"question": "What is 3*3?", "answer": "9"}, {"question": "What is 10/2?", "answer": "5"}, ] # --------------------------------------------------------------------------- # 3. Load a metric (accuracy) from Hugging Face evaluate library # --------------------------------------------------------------------------- accuracy_metric = evaluate.load("accuracy") # --------------------------------------------------------------------------- # 4. Inference helper functions # --------------------------------------------------------------------------- def generate_answer(question): """ Generates an answer to the given question using the loaded model. """ # Simple prompt prompt = f"Question: {question}\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=30, temperature=0.0, # deterministic ) text_output = tokenizer.decode(outputs[0], skip_special_tokens=True) return text_output def parse_answer(model_output): """ Heuristic to extract the final numeric answer from model's text. You can customize this regex or logic as needed. """ # Example: find digits (possibly multiple, but we keep the first match) match = re.search(r"(\d+)", model_output) if match: return match.group(1) # fallback to entire text if no digits found return model_output.strip() # --------------------------------------------------------------------------- # 5. Evaluation routine # --------------------------------------------------------------------------- def run_evaluation(): predictions = [] references = [] for sample in test_data: question = sample["question"] reference_answer = sample["answer"] # Model inference model_output = generate_answer(question) predicted_answer = parse_answer(model_output) predictions.append(predicted_answer) references.append(reference_answer) # Normalize answers (simple: just remove spaces/punctuation, lower case) def normalize_answer(ans): return ans.lower().strip() norm_preds = [normalize_answer(p) for p in predictions] norm_refs = [normalize_answer(r) for r in references] # Compute accuracy results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs) accuracy = results["accuracy"] # Create a simple bar chart: correct vs. incorrect correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs)) incorrect_count = len(test_data) - correct_count fig, ax = plt.subplots() ax.bar(["Correct", "Incorrect"], [correct_count, incorrect_count], color=["green", "red"]) ax.set_title("Evaluation Results") ax.set_ylabel("Count") ax.set_ylim([0, len(test_data)]) # Convert the plot to a base64-encoded PNG for Gradio display buf = io.BytesIO() plt.savefig(buf, format="png") buf.seek(0) plt.close(fig) data = base64.b64encode(buf.read()).decode("utf-8") image_url = f"data:image/png;base64,{data}" # Return text and the plot return f"Accuracy: {accuracy:.2f}", image_url # --------------------------------------------------------------------------- # 6. Gradio App # --------------------------------------------------------------------------- with gr.Blocks() as demo: gr.Markdown("# Simple Math Evaluation with 'Llama 3.2'") eval_button = gr.Button("Run Evaluation") output_text = gr.Textbox(label="Results") output_plot = gr.HTML(label="Plot") eval_button.click( fn=run_evaluation, inputs=None, outputs=[output_text, output_plot] ) demo.launch()