rmayormartins's picture
go
36b50a6
raw
history blame
7.87 kB
import os
from typing import List, Tuple, Dict
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
import gradio as gr
import torch
class EnhancedRAGSystem:
def __init__(self):
self.chunk_size = 500
self.chunk_overlap = 50
self.k_documents = 4
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=len
)
self.embedding_model_name = "intfloat/multilingual-e5-large"
self.llm_model_name = "google/flan-t5-large"
self.prompt_template = PromptTemplate(
template="""Use the context below to answer the question.
If the answer is not in the context, say "I don't have enough information in the context to answer this question."
Context: {context}
Question: {question}
Detailed answer:""",
input_variables=["context", "question"]
)
self.embeddings = HuggingFaceEmbeddings(
model_name=self.embedding_model_name,
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
)
self.tokenizer = AutoTokenizer.from_pretrained(self.llm_model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.llm_model_name)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model.to(self.device)
self.pipe = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=512,
device=0 if torch.cuda.is_available() else -1,
model_kwargs={"temperature": 0.7}
)
self.llm = HuggingFacePipeline(pipeline=self.pipe)
def process_documents(self, text: str) -> bool:
try:
texts = self.text_splitter.split_text(text)
self.vectorstore = Chroma.from_texts(
texts,
self.embeddings,
metadatas=[{"source": f"chunk_{i}", "text": t} for i, t in enumerate(texts)],
collection_name="enhanced_rag_docs"
)
self.retriever = self.vectorstore.as_retriever(
search_kwargs={"k": self.k_documents}
)
self.qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=self.retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": self.prompt_template}
)
return True
except Exception as e:
print(f"Processing error: {str(e)}")
return False
def answer_question(self, question: str) -> Tuple[str, str]:
try:
response = self.qa_chain({"query": question})
answer = response["result"]
sources = []
for i, doc in enumerate(response["source_documents"], 1):
text_preview = doc.page_content[:100] + "..."
sources.append(f"Excerpt {i}: {text_preview}")
sources_text = "\n".join(sources)
return answer, sources_text
except Exception as e:
return f"Error answering: {str(e)}", ""
def create_enhanced_interface():
rag_system = EnhancedRAGSystem()
def process_and_answer(text: str, question: str) -> str:
if not text.strip() or not question.strip():
return "Please provide both text and question."
if not rag_system.process_documents(text):
return "Error processing the text."
answer, sources = rag_system.answer_question(question)
if sources:
return f"""Answer: {answer}
Relevant excerpts consulted:
{sources}"""
return answer
# HTML para o cabeçalho
custom_css = """
.custom-description {
margin-bottom: 20px;
text-align: center;
}
.custom-description a {
text-decoration: none;
color: #007bff;
margin: 0 5px;
}
.custom-description a:hover {
text-decoration: underline;
}
"""
with gr.Blocks(css=custom_css) as interface:
gr.HTML("""
<div class="custom-description">
<h1>Advanced RAG with Multilingual Support</h1>
<p>Ramon Mayor Martins:
<a href="https://rmayormartins.github.io/" target="_blank">Website</a> |
<a href="https://huggingface.co/rmayormartins" target="_blank">Spaces</a> |
<a href="https://github.com/rmayormartins" target="_blank">GitHub</a>
</p>
<p>This system uses Retrieval-Augmented Generation (RAG) to answer questions about your texts in multiple languages.
Simply paste your text and ask questions in any language!</p>
</div>
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Base Text",
placeholder="Paste here the text that will serve as knowledge base...",
lines=10
)
question_input = gr.Textbox(
label="Your Question",
placeholder="What would you like to know about the text?"
)
submit_btn = gr.Button("Submit")
with gr.Column():
output = gr.Textbox(label="Answer")
examples = [
["The Earth is the third planet from the Sun. It has one natural satellite called the Moon. It is the only known planet to harbor life.",
"What is Earth's natural satellite?"],
["La Tierra es el tercer planeta del Sistema Solar. Tiene un satélite natural llamado Luna. Es el único planeta conocido que alberga vida.",
"¿Cuál es el satélite natural de la Tierra?"],
["A Terra é o terceiro planeta do Sistema Solar. Tem um satélite natural chamado Lua. É o único planeta conhecido que abriga vida.",
"Qual é o satélite natural da Terra?"],
["The Sun is a medium-sized star at the center of our Solar System. It provides light and heat to all planets.",
"What is the Sun?"],
["El Sol es una estrella de tamaño medio en el centro de nuestro Sistema Solar. Proporciona luz y calor a todos los planetas.",
"¿Qué es el Sol?"],
["O Sol é uma estrela de tamanho médio no centro do nosso Sistema Solar. Ele fornece luz e calor para todos os planetas.",
"O que é o Sol?"]
]
gr.Examples(
examples=examples,
inputs=[text_input, question_input],
outputs=output,
fn=process_and_answer,
cache_examples=True
)
submit_btn.click(
fn=process_and_answer,
inputs=[text_input, question_input],
outputs=output
)
return interface
if __name__ == "__main__":
demo = create_enhanced_interface()
demo.launch()