rinong commited on
Commit
67ae780
1 Parent(s): 628a5a4

Added util functions

Browse files
Files changed (1) hide show
  1. util.py +136 -0
util.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from matplotlib import pyplot as plt
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import os
5
+ import dlib
6
+ from PIL import Image
7
+ import numpy as np
8
+ import scipy
9
+ import scipy.ndimage
10
+ import torchvision.transforms as transforms
11
+
12
+ def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
13
+ # image is [3,h,w] or [1,3,h,w] tensor [0,1]
14
+ if not isinstance(image, torch.Tensor):
15
+ image = transforms.ToTensor()(image).unsqueeze(0)
16
+ if image.is_cuda:
17
+ image = image.cpu()
18
+ if size is not None and image.size(-1) != size:
19
+ image = F.interpolate(image, size=(size,size), mode=mode)
20
+ if image.dim() == 4:
21
+ image = image[0]
22
+ image = image.permute(1, 2, 0).detach().numpy()
23
+ plt.figure()
24
+ plt.title(title)
25
+ plt.axis('off')
26
+ plt.imshow(image)
27
+
28
+ def get_landmark(filepath, predictor):
29
+ """get landmark with dlib
30
+ :return: np.array shape=(68, 2)
31
+ """
32
+ detector = dlib.get_frontal_face_detector()
33
+
34
+ img = dlib.load_rgb_image(filepath)
35
+ dets = detector(img, 1)
36
+ assert len(dets) > 0, "Face not detected, try another face image"
37
+
38
+ for k, d in enumerate(dets):
39
+ shape = predictor(img, d)
40
+
41
+ t = list(shape.parts())
42
+ a = []
43
+ for tt in t:
44
+ a.append([tt.x, tt.y])
45
+ lm = np.array(a)
46
+ return lm
47
+
48
+ def align_face(filepath, predictor, output_size=256, transform_size=1024, enable_padding=True):
49
+
50
+ """
51
+ :param filepath: str
52
+ :return: PIL Image
53
+ """
54
+ lm = get_landmark(filepath, predictor)
55
+
56
+ lm_chin = lm[0: 17] # left-right
57
+ lm_eyebrow_left = lm[17: 22] # left-right
58
+ lm_eyebrow_right = lm[22: 27] # left-right
59
+ lm_nose = lm[27: 31] # top-down
60
+ lm_nostrils = lm[31: 36] # top-down
61
+ lm_eye_left = lm[36: 42] # left-clockwise
62
+ lm_eye_right = lm[42: 48] # left-clockwise
63
+ lm_mouth_outer = lm[48: 60] # left-clockwise
64
+ lm_mouth_inner = lm[60: 68] # left-clockwise
65
+
66
+ # Calculate auxiliary vectors.
67
+ eye_left = np.mean(lm_eye_left, axis=0)
68
+ eye_right = np.mean(lm_eye_right, axis=0)
69
+ eye_avg = (eye_left + eye_right) * 0.5
70
+ eye_to_eye = eye_right - eye_left
71
+ mouth_left = lm_mouth_outer[0]
72
+ mouth_right = lm_mouth_outer[6]
73
+ mouth_avg = (mouth_left + mouth_right) * 0.5
74
+ eye_to_mouth = mouth_avg - eye_avg
75
+
76
+ # Choose oriented crop rectangle.
77
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
78
+ x /= np.hypot(*x)
79
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
80
+ y = np.flipud(x) * [-1, 1]
81
+ c = eye_avg + eye_to_mouth * 0.1
82
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
83
+ qsize = np.hypot(*x) * 2
84
+
85
+ # read image
86
+ img = Image.open(filepath)
87
+
88
+ transform_size = output_size
89
+ enable_padding = True
90
+
91
+ # Shrink.
92
+ shrink = int(np.floor(qsize / output_size * 0.5))
93
+ if shrink > 1:
94
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
95
+ img = img.resize(rsize, Image.ANTIALIAS)
96
+ quad /= shrink
97
+ qsize /= shrink
98
+
99
+ # Crop.
100
+ border = max(int(np.rint(qsize * 0.1)), 3)
101
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
102
+ int(np.ceil(max(quad[:, 1]))))
103
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
104
+ min(crop[3] + border, img.size[1]))
105
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
106
+ img = img.crop(crop)
107
+ quad -= crop[0:2]
108
+
109
+ # Pad.
110
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
111
+ int(np.ceil(max(quad[:, 1]))))
112
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
113
+ max(pad[3] - img.size[1] + border, 0))
114
+ if enable_padding and max(pad) > border - 4:
115
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
116
+ img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
117
+ h, w, _ = img.shape
118
+ y, x, _ = np.ogrid[:h, :w, :1]
119
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
120
+ 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
121
+ blur = qsize * 0.02
122
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
123
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
124
+ img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
125
+ quad += pad[:2]
126
+
127
+ # Transform.
128
+ img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
129
+ if output_size < transform_size:
130
+ img = img.resize((output_size, output_size), Image.ANTIALIAS)
131
+
132
+ # Return aligned image.
133
+ return img
134
+
135
+ def strip_path_extension(path):
136
+ return os.path.splitext(path)[0]