Spaces:
Runtime error
Runtime error
Added non-gpu ops
Browse files- model/sg2_model.py +6 -1
- op/__init__.py +0 -2
- op/conv2d_gradfix.py +227 -227
- op/fused_act.py +86 -119
- op/fused_act_cpu.py +41 -0
- op/fused_bias_act.cpp +20 -31
- op/fused_bias_act_kernel.cu +98 -104
- op/upfirdn2d.cpp +22 -30
- op/upfirdn2d.py +187 -209
- op/upfirdn2d_cpu.py +60 -0
- op/upfirdn2d_kernel.cu +271 -368
model/sg2_model.py
CHANGED
@@ -8,7 +8,12 @@ from torch import nn
|
|
8 |
from torch.nn import functional as F
|
9 |
from torch.autograd import Function
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
class PixelNorm(nn.Module):
|
|
|
8 |
from torch.nn import functional as F
|
9 |
from torch.autograd import Function
|
10 |
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
from op.fused_act import FusedLeakyReLU, fused_leaky_relu
|
13 |
+
from op.upfirdn2d import upfirdn2d
|
14 |
+
else:
|
15 |
+
from op.fused_act_cpu import FusedLeakyReLU, fused_leaky_relu
|
16 |
+
from op.upfirdn2d_cpu import upfirdn2d
|
17 |
|
18 |
|
19 |
class PixelNorm(nn.Module):
|
op/__init__.py
CHANGED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
-
from .upfirdn2d import upfirdn2d
|
|
|
|
|
|
op/conv2d_gradfix.py
CHANGED
@@ -1,227 +1,227 @@
|
|
1 |
-
import contextlib
|
2 |
-
import warnings
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from torch import autograd
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
enabled = True
|
9 |
-
weight_gradients_disabled = False
|
10 |
-
|
11 |
-
|
12 |
-
@contextlib.contextmanager
|
13 |
-
def no_weight_gradients():
|
14 |
-
global weight_gradients_disabled
|
15 |
-
|
16 |
-
old = weight_gradients_disabled
|
17 |
-
weight_gradients_disabled = True
|
18 |
-
yield
|
19 |
-
weight_gradients_disabled = old
|
20 |
-
|
21 |
-
|
22 |
-
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
23 |
-
if could_use_op(input):
|
24 |
-
return conv2d_gradfix(
|
25 |
-
transpose=False,
|
26 |
-
weight_shape=weight.shape,
|
27 |
-
stride=stride,
|
28 |
-
padding=padding,
|
29 |
-
output_padding=0,
|
30 |
-
dilation=dilation,
|
31 |
-
groups=groups,
|
32 |
-
).apply(input, weight, bias)
|
33 |
-
|
34 |
-
return F.conv2d(
|
35 |
-
input=input,
|
36 |
-
weight=weight,
|
37 |
-
bias=bias,
|
38 |
-
stride=stride,
|
39 |
-
padding=padding,
|
40 |
-
dilation=dilation,
|
41 |
-
groups=groups,
|
42 |
-
)
|
43 |
-
|
44 |
-
|
45 |
-
def conv_transpose2d(
|
46 |
-
input,
|
47 |
-
weight,
|
48 |
-
bias=None,
|
49 |
-
stride=1,
|
50 |
-
padding=0,
|
51 |
-
output_padding=0,
|
52 |
-
groups=1,
|
53 |
-
dilation=1,
|
54 |
-
):
|
55 |
-
if could_use_op(input):
|
56 |
-
return conv2d_gradfix(
|
57 |
-
transpose=True,
|
58 |
-
weight_shape=weight.shape,
|
59 |
-
stride=stride,
|
60 |
-
padding=padding,
|
61 |
-
output_padding=output_padding,
|
62 |
-
groups=groups,
|
63 |
-
dilation=dilation,
|
64 |
-
).apply(input, weight, bias)
|
65 |
-
|
66 |
-
return F.conv_transpose2d(
|
67 |
-
input=input,
|
68 |
-
weight=weight,
|
69 |
-
bias=bias,
|
70 |
-
stride=stride,
|
71 |
-
padding=padding,
|
72 |
-
output_padding=output_padding,
|
73 |
-
dilation=dilation,
|
74 |
-
groups=groups,
|
75 |
-
)
|
76 |
-
|
77 |
-
|
78 |
-
def could_use_op(input):
|
79 |
-
if (not enabled) or (not torch.backends.cudnn.enabled):
|
80 |
-
return False
|
81 |
-
|
82 |
-
if input.device.type != "cuda":
|
83 |
-
return False
|
84 |
-
|
85 |
-
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
86 |
-
return True
|
87 |
-
|
88 |
-
warnings.warn(
|
89 |
-
f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
90 |
-
)
|
91 |
-
|
92 |
-
return False
|
93 |
-
|
94 |
-
|
95 |
-
def ensure_tuple(xs, ndim):
|
96 |
-
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
97 |
-
|
98 |
-
return xs
|
99 |
-
|
100 |
-
|
101 |
-
conv2d_gradfix_cache = dict()
|
102 |
-
|
103 |
-
|
104 |
-
def conv2d_gradfix(
|
105 |
-
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
106 |
-
):
|
107 |
-
ndim = 2
|
108 |
-
weight_shape = tuple(weight_shape)
|
109 |
-
stride = ensure_tuple(stride, ndim)
|
110 |
-
padding = ensure_tuple(padding, ndim)
|
111 |
-
output_padding = ensure_tuple(output_padding, ndim)
|
112 |
-
dilation = ensure_tuple(dilation, ndim)
|
113 |
-
|
114 |
-
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
115 |
-
if key in conv2d_gradfix_cache:
|
116 |
-
return conv2d_gradfix_cache[key]
|
117 |
-
|
118 |
-
common_kwargs = dict(
|
119 |
-
stride=stride, padding=padding, dilation=dilation, groups=groups
|
120 |
-
)
|
121 |
-
|
122 |
-
def calc_output_padding(input_shape, output_shape):
|
123 |
-
if transpose:
|
124 |
-
return [0, 0]
|
125 |
-
|
126 |
-
return [
|
127 |
-
input_shape[i + 2]
|
128 |
-
- (output_shape[i + 2] - 1) * stride[i]
|
129 |
-
- (1 - 2 * padding[i])
|
130 |
-
- dilation[i] * (weight_shape[i + 2] - 1)
|
131 |
-
for i in range(ndim)
|
132 |
-
]
|
133 |
-
|
134 |
-
class Conv2d(autograd.Function):
|
135 |
-
@staticmethod
|
136 |
-
def forward(ctx, input, weight, bias):
|
137 |
-
if not transpose:
|
138 |
-
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
139 |
-
|
140 |
-
else:
|
141 |
-
out = F.conv_transpose2d(
|
142 |
-
input=input,
|
143 |
-
weight=weight,
|
144 |
-
bias=bias,
|
145 |
-
output_padding=output_padding,
|
146 |
-
**common_kwargs,
|
147 |
-
)
|
148 |
-
|
149 |
-
ctx.save_for_backward(input, weight)
|
150 |
-
|
151 |
-
return out
|
152 |
-
|
153 |
-
@staticmethod
|
154 |
-
def backward(ctx, grad_output):
|
155 |
-
input, weight = ctx.saved_tensors
|
156 |
-
grad_input, grad_weight, grad_bias = None, None, None
|
157 |
-
|
158 |
-
if ctx.needs_input_grad[0]:
|
159 |
-
p = calc_output_padding(
|
160 |
-
input_shape=input.shape, output_shape=grad_output.shape
|
161 |
-
)
|
162 |
-
grad_input = conv2d_gradfix(
|
163 |
-
transpose=(not transpose),
|
164 |
-
weight_shape=weight_shape,
|
165 |
-
output_padding=p,
|
166 |
-
**common_kwargs,
|
167 |
-
).apply(grad_output, weight, None)
|
168 |
-
|
169 |
-
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
170 |
-
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
171 |
-
|
172 |
-
if ctx.needs_input_grad[2]:
|
173 |
-
grad_bias = grad_output.sum((0, 2, 3))
|
174 |
-
|
175 |
-
return grad_input, grad_weight, grad_bias
|
176 |
-
|
177 |
-
class Conv2dGradWeight(autograd.Function):
|
178 |
-
@staticmethod
|
179 |
-
def forward(ctx, grad_output, input):
|
180 |
-
op = torch._C._jit_get_operation(
|
181 |
-
"aten::cudnn_convolution_backward_weight"
|
182 |
-
if not transpose
|
183 |
-
else "aten::cudnn_convolution_transpose_backward_weight"
|
184 |
-
)
|
185 |
-
flags = [
|
186 |
-
torch.backends.cudnn.benchmark,
|
187 |
-
torch.backends.cudnn.deterministic,
|
188 |
-
torch.backends.cudnn.allow_tf32,
|
189 |
-
]
|
190 |
-
grad_weight = op(
|
191 |
-
weight_shape,
|
192 |
-
grad_output,
|
193 |
-
input,
|
194 |
-
padding,
|
195 |
-
stride,
|
196 |
-
dilation,
|
197 |
-
groups,
|
198 |
-
*flags,
|
199 |
-
)
|
200 |
-
ctx.save_for_backward(grad_output, input)
|
201 |
-
|
202 |
-
return grad_weight
|
203 |
-
|
204 |
-
@staticmethod
|
205 |
-
def backward(ctx, grad_grad_weight):
|
206 |
-
grad_output, input = ctx.saved_tensors
|
207 |
-
grad_grad_output, grad_grad_input = None, None
|
208 |
-
|
209 |
-
if ctx.needs_input_grad[0]:
|
210 |
-
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
211 |
-
|
212 |
-
if ctx.needs_input_grad[1]:
|
213 |
-
p = calc_output_padding(
|
214 |
-
input_shape=input.shape, output_shape=grad_output.shape
|
215 |
-
)
|
216 |
-
grad_grad_input = conv2d_gradfix(
|
217 |
-
transpose=(not transpose),
|
218 |
-
weight_shape=weight_shape,
|
219 |
-
output_padding=p,
|
220 |
-
**common_kwargs,
|
221 |
-
).apply(grad_output, grad_grad_weight, None)
|
222 |
-
|
223 |
-
return grad_grad_output, grad_grad_input
|
224 |
-
|
225 |
-
conv2d_gradfix_cache[key] = Conv2d
|
226 |
-
|
227 |
-
return Conv2d
|
|
|
1 |
+
import contextlib
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import autograd
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
enabled = True
|
9 |
+
weight_gradients_disabled = False
|
10 |
+
|
11 |
+
|
12 |
+
@contextlib.contextmanager
|
13 |
+
def no_weight_gradients():
|
14 |
+
global weight_gradients_disabled
|
15 |
+
|
16 |
+
old = weight_gradients_disabled
|
17 |
+
weight_gradients_disabled = True
|
18 |
+
yield
|
19 |
+
weight_gradients_disabled = old
|
20 |
+
|
21 |
+
|
22 |
+
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
23 |
+
if could_use_op(input):
|
24 |
+
return conv2d_gradfix(
|
25 |
+
transpose=False,
|
26 |
+
weight_shape=weight.shape,
|
27 |
+
stride=stride,
|
28 |
+
padding=padding,
|
29 |
+
output_padding=0,
|
30 |
+
dilation=dilation,
|
31 |
+
groups=groups,
|
32 |
+
).apply(input, weight, bias)
|
33 |
+
|
34 |
+
return F.conv2d(
|
35 |
+
input=input,
|
36 |
+
weight=weight,
|
37 |
+
bias=bias,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def conv_transpose2d(
|
46 |
+
input,
|
47 |
+
weight,
|
48 |
+
bias=None,
|
49 |
+
stride=1,
|
50 |
+
padding=0,
|
51 |
+
output_padding=0,
|
52 |
+
groups=1,
|
53 |
+
dilation=1,
|
54 |
+
):
|
55 |
+
if could_use_op(input):
|
56 |
+
return conv2d_gradfix(
|
57 |
+
transpose=True,
|
58 |
+
weight_shape=weight.shape,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
output_padding=output_padding,
|
62 |
+
groups=groups,
|
63 |
+
dilation=dilation,
|
64 |
+
).apply(input, weight, bias)
|
65 |
+
|
66 |
+
return F.conv_transpose2d(
|
67 |
+
input=input,
|
68 |
+
weight=weight,
|
69 |
+
bias=bias,
|
70 |
+
stride=stride,
|
71 |
+
padding=padding,
|
72 |
+
output_padding=output_padding,
|
73 |
+
dilation=dilation,
|
74 |
+
groups=groups,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
def could_use_op(input):
|
79 |
+
if (not enabled) or (not torch.backends.cudnn.enabled):
|
80 |
+
return False
|
81 |
+
|
82 |
+
if input.device.type != "cuda":
|
83 |
+
return False
|
84 |
+
|
85 |
+
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
86 |
+
return True
|
87 |
+
|
88 |
+
warnings.warn(
|
89 |
+
f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
90 |
+
)
|
91 |
+
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def ensure_tuple(xs, ndim):
|
96 |
+
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
97 |
+
|
98 |
+
return xs
|
99 |
+
|
100 |
+
|
101 |
+
conv2d_gradfix_cache = dict()
|
102 |
+
|
103 |
+
|
104 |
+
def conv2d_gradfix(
|
105 |
+
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
106 |
+
):
|
107 |
+
ndim = 2
|
108 |
+
weight_shape = tuple(weight_shape)
|
109 |
+
stride = ensure_tuple(stride, ndim)
|
110 |
+
padding = ensure_tuple(padding, ndim)
|
111 |
+
output_padding = ensure_tuple(output_padding, ndim)
|
112 |
+
dilation = ensure_tuple(dilation, ndim)
|
113 |
+
|
114 |
+
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
115 |
+
if key in conv2d_gradfix_cache:
|
116 |
+
return conv2d_gradfix_cache[key]
|
117 |
+
|
118 |
+
common_kwargs = dict(
|
119 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups
|
120 |
+
)
|
121 |
+
|
122 |
+
def calc_output_padding(input_shape, output_shape):
|
123 |
+
if transpose:
|
124 |
+
return [0, 0]
|
125 |
+
|
126 |
+
return [
|
127 |
+
input_shape[i + 2]
|
128 |
+
- (output_shape[i + 2] - 1) * stride[i]
|
129 |
+
- (1 - 2 * padding[i])
|
130 |
+
- dilation[i] * (weight_shape[i + 2] - 1)
|
131 |
+
for i in range(ndim)
|
132 |
+
]
|
133 |
+
|
134 |
+
class Conv2d(autograd.Function):
|
135 |
+
@staticmethod
|
136 |
+
def forward(ctx, input, weight, bias):
|
137 |
+
if not transpose:
|
138 |
+
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
139 |
+
|
140 |
+
else:
|
141 |
+
out = F.conv_transpose2d(
|
142 |
+
input=input,
|
143 |
+
weight=weight,
|
144 |
+
bias=bias,
|
145 |
+
output_padding=output_padding,
|
146 |
+
**common_kwargs,
|
147 |
+
)
|
148 |
+
|
149 |
+
ctx.save_for_backward(input, weight)
|
150 |
+
|
151 |
+
return out
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def backward(ctx, grad_output):
|
155 |
+
input, weight = ctx.saved_tensors
|
156 |
+
grad_input, grad_weight, grad_bias = None, None, None
|
157 |
+
|
158 |
+
if ctx.needs_input_grad[0]:
|
159 |
+
p = calc_output_padding(
|
160 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
161 |
+
)
|
162 |
+
grad_input = conv2d_gradfix(
|
163 |
+
transpose=(not transpose),
|
164 |
+
weight_shape=weight_shape,
|
165 |
+
output_padding=p,
|
166 |
+
**common_kwargs,
|
167 |
+
).apply(grad_output, weight, None)
|
168 |
+
|
169 |
+
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
170 |
+
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
171 |
+
|
172 |
+
if ctx.needs_input_grad[2]:
|
173 |
+
grad_bias = grad_output.sum((0, 2, 3))
|
174 |
+
|
175 |
+
return grad_input, grad_weight, grad_bias
|
176 |
+
|
177 |
+
class Conv2dGradWeight(autograd.Function):
|
178 |
+
@staticmethod
|
179 |
+
def forward(ctx, grad_output, input):
|
180 |
+
op = torch._C._jit_get_operation(
|
181 |
+
"aten::cudnn_convolution_backward_weight"
|
182 |
+
if not transpose
|
183 |
+
else "aten::cudnn_convolution_transpose_backward_weight"
|
184 |
+
)
|
185 |
+
flags = [
|
186 |
+
torch.backends.cudnn.benchmark,
|
187 |
+
torch.backends.cudnn.deterministic,
|
188 |
+
torch.backends.cudnn.allow_tf32,
|
189 |
+
]
|
190 |
+
grad_weight = op(
|
191 |
+
weight_shape,
|
192 |
+
grad_output,
|
193 |
+
input,
|
194 |
+
padding,
|
195 |
+
stride,
|
196 |
+
dilation,
|
197 |
+
groups,
|
198 |
+
*flags,
|
199 |
+
)
|
200 |
+
ctx.save_for_backward(grad_output, input)
|
201 |
+
|
202 |
+
return grad_weight
|
203 |
+
|
204 |
+
@staticmethod
|
205 |
+
def backward(ctx, grad_grad_weight):
|
206 |
+
grad_output, input = ctx.saved_tensors
|
207 |
+
grad_grad_output, grad_grad_input = None, None
|
208 |
+
|
209 |
+
if ctx.needs_input_grad[0]:
|
210 |
+
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
211 |
+
|
212 |
+
if ctx.needs_input_grad[1]:
|
213 |
+
p = calc_output_padding(
|
214 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
215 |
+
)
|
216 |
+
grad_grad_input = conv2d_gradfix(
|
217 |
+
transpose=(not transpose),
|
218 |
+
weight_shape=weight_shape,
|
219 |
+
output_padding=p,
|
220 |
+
**common_kwargs,
|
221 |
+
).apply(grad_output, grad_grad_weight, None)
|
222 |
+
|
223 |
+
return grad_grad_output, grad_grad_input
|
224 |
+
|
225 |
+
conv2d_gradfix_cache[key] = Conv2d
|
226 |
+
|
227 |
+
return Conv2d
|
op/fused_act.py
CHANGED
@@ -1,119 +1,86 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.
|
6 |
-
from torch.
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
fused
|
12 |
-
|
13 |
-
|
14 |
-
os.path.join(module_path,
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
ctx.
|
24 |
-
ctx.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
def
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
class FusedLeakyReLU(nn.Module):
|
88 |
-
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5):
|
89 |
-
super().__init__()
|
90 |
-
|
91 |
-
if bias:
|
92 |
-
self.bias = nn.Parameter(torch.zeros(channel))
|
93 |
-
|
94 |
-
else:
|
95 |
-
self.bias = None
|
96 |
-
|
97 |
-
self.negative_slope = negative_slope
|
98 |
-
self.scale = scale
|
99 |
-
|
100 |
-
def forward(self, input):
|
101 |
-
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
102 |
-
|
103 |
-
|
104 |
-
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
105 |
-
if input.device.type == "cpu":
|
106 |
-
if bias is not None:
|
107 |
-
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
108 |
-
return (
|
109 |
-
F.leaky_relu(
|
110 |
-
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
111 |
-
)
|
112 |
-
* scale
|
113 |
-
)
|
114 |
-
|
115 |
-
else:
|
116 |
-
return F.leaky_relu(input, negative_slope=0.2) * scale
|
117 |
-
|
118 |
-
else:
|
119 |
-
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.utils.cpp_extension import load
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
fused = load(
|
11 |
+
'fused',
|
12 |
+
sources=[
|
13 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
14 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
15 |
+
],
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
20 |
+
@staticmethod
|
21 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
22 |
+
ctx.save_for_backward(out)
|
23 |
+
ctx.negative_slope = negative_slope
|
24 |
+
ctx.scale = scale
|
25 |
+
|
26 |
+
empty = grad_output.new_empty(0)
|
27 |
+
|
28 |
+
grad_input = fused.fused_bias_act(
|
29 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
30 |
+
)
|
31 |
+
|
32 |
+
dim = [0]
|
33 |
+
|
34 |
+
if grad_input.ndim > 2:
|
35 |
+
dim += list(range(2, grad_input.ndim))
|
36 |
+
|
37 |
+
grad_bias = grad_input.sum(dim).detach()
|
38 |
+
|
39 |
+
return grad_input, grad_bias
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
43 |
+
out, = ctx.saved_tensors
|
44 |
+
gradgrad_out = fused.fused_bias_act(
|
45 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
46 |
+
)
|
47 |
+
|
48 |
+
return gradgrad_out, None, None, None
|
49 |
+
|
50 |
+
|
51 |
+
class FusedLeakyReLUFunction(Function):
|
52 |
+
@staticmethod
|
53 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
54 |
+
empty = input.new_empty(0)
|
55 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
56 |
+
ctx.save_for_backward(out)
|
57 |
+
ctx.negative_slope = negative_slope
|
58 |
+
ctx.scale = scale
|
59 |
+
|
60 |
+
return out
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def backward(ctx, grad_output):
|
64 |
+
out, = ctx.saved_tensors
|
65 |
+
|
66 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
67 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
68 |
+
)
|
69 |
+
|
70 |
+
return grad_input, grad_bias, None, None
|
71 |
+
|
72 |
+
|
73 |
+
class FusedLeakyReLU(nn.Module):
|
74 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
78 |
+
self.negative_slope = negative_slope
|
79 |
+
self.scale = scale
|
80 |
+
|
81 |
+
def forward(self, input):
|
82 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
83 |
+
|
84 |
+
|
85 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
86 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
op/fused_act_cpu.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
|
11 |
+
|
12 |
+
class FusedLeakyReLU(nn.Module):
|
13 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
17 |
+
self.negative_slope = negative_slope
|
18 |
+
self.scale = scale
|
19 |
+
|
20 |
+
def forward(self, input):
|
21 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
22 |
+
|
23 |
+
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
24 |
+
if input.device.type == "cpu":
|
25 |
+
if bias is not None:
|
26 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
27 |
+
return (
|
28 |
+
F.leaky_relu(
|
29 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
30 |
+
)
|
31 |
+
* scale
|
32 |
+
)
|
33 |
+
|
34 |
+
else:
|
35 |
+
return F.leaky_relu(input, negative_slope=0.2) * scale
|
36 |
+
|
37 |
+
else:
|
38 |
+
return FusedLeakyReLUFunction.apply(
|
39 |
+
input.contiguous(), bias, negative_slope, scale
|
40 |
+
)
|
41 |
+
|
op/fused_bias_act.cpp
CHANGED
@@ -1,32 +1,21 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
float alpha, float scale) {
|
22 |
-
CHECK_INPUT(input);
|
23 |
-
CHECK_INPUT(bias);
|
24 |
-
|
25 |
-
at::DeviceGuard guard(input.device());
|
26 |
-
|
27 |
-
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
28 |
-
}
|
29 |
-
|
30 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
31 |
-
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
32 |
}
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
5 |
+
int act, int grad, float alpha, float scale);
|
6 |
+
|
7 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
8 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
9 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
10 |
+
|
11 |
+
torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
12 |
+
int act, int grad, float alpha, float scale) {
|
13 |
+
CHECK_CUDA(input);
|
14 |
+
CHECK_CUDA(bias);
|
15 |
+
|
16 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
17 |
+
}
|
18 |
+
|
19 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
20 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
}
|
op/fused_bias_act_kernel.cu
CHANGED
@@ -1,105 +1,99 @@
|
|
1 |
-
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
-
//
|
3 |
-
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
-
// To view a copy of this license, visit
|
5 |
-
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
-
|
7 |
-
#include <torch/types.h>
|
8 |
-
|
9 |
-
#include <ATen/ATen.h>
|
10 |
-
#include <ATen/AccumulateType.h>
|
11 |
-
#include <ATen/cuda/
|
12 |
-
#include <ATen/cuda/
|
13 |
-
|
14 |
-
|
15 |
-
#include <
|
16 |
-
|
17 |
-
|
18 |
-
template <typename scalar_t>
|
19 |
-
static __global__ void
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
y.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
100 |
-
b.data_ptr<scalar_t>(), ref.data_ptr<scalar_t>(), act, grad, alpha,
|
101 |
-
scale, loop_x, size_x, step_b, size_b, use_bias, use_ref);
|
102 |
-
});
|
103 |
-
|
104 |
-
return y;
|
105 |
}
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
|
20 |
+
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
|
21 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
22 |
+
|
23 |
+
scalar_t zero = 0.0;
|
24 |
+
|
25 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
|
26 |
+
scalar_t x = p_x[xi];
|
27 |
+
|
28 |
+
if (use_bias) {
|
29 |
+
x += p_b[(xi / step_b) % size_b];
|
30 |
+
}
|
31 |
+
|
32 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
33 |
+
|
34 |
+
scalar_t y;
|
35 |
+
|
36 |
+
switch (act * 10 + grad) {
|
37 |
+
default:
|
38 |
+
case 10: y = x; break;
|
39 |
+
case 11: y = x; break;
|
40 |
+
case 12: y = 0.0; break;
|
41 |
+
|
42 |
+
case 30: y = (x > 0.0) ? x : x * alpha; break;
|
43 |
+
case 31: y = (ref > 0.0) ? x : x * alpha; break;
|
44 |
+
case 32: y = 0.0; break;
|
45 |
+
}
|
46 |
+
|
47 |
+
out[xi] = y * scale;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
53 |
+
int act, int grad, float alpha, float scale) {
|
54 |
+
int curDevice = -1;
|
55 |
+
cudaGetDevice(&curDevice);
|
56 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
57 |
+
|
58 |
+
auto x = input.contiguous();
|
59 |
+
auto b = bias.contiguous();
|
60 |
+
auto ref = refer.contiguous();
|
61 |
+
|
62 |
+
int use_bias = b.numel() ? 1 : 0;
|
63 |
+
int use_ref = ref.numel() ? 1 : 0;
|
64 |
+
|
65 |
+
int size_x = x.numel();
|
66 |
+
int size_b = b.numel();
|
67 |
+
int step_b = 1;
|
68 |
+
|
69 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
70 |
+
step_b *= x.size(i);
|
71 |
+
}
|
72 |
+
|
73 |
+
int loop_x = 4;
|
74 |
+
int block_size = 4 * 32;
|
75 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
76 |
+
|
77 |
+
auto y = torch::empty_like(x);
|
78 |
+
|
79 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
|
80 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
81 |
+
y.data_ptr<scalar_t>(),
|
82 |
+
x.data_ptr<scalar_t>(),
|
83 |
+
b.data_ptr<scalar_t>(),
|
84 |
+
ref.data_ptr<scalar_t>(),
|
85 |
+
act,
|
86 |
+
grad,
|
87 |
+
alpha,
|
88 |
+
scale,
|
89 |
+
loop_x,
|
90 |
+
size_x,
|
91 |
+
step_b,
|
92 |
+
size_b,
|
93 |
+
use_bias,
|
94 |
+
use_ref
|
95 |
+
);
|
96 |
+
});
|
97 |
+
|
98 |
+
return y;
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
}
|
op/upfirdn2d.cpp
CHANGED
@@ -1,31 +1,23 @@
|
|
1 |
-
#include <
|
2 |
-
|
3 |
-
|
4 |
-
torch::Tensor upfirdn2d_op(const torch::Tensor
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
#define
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
at::DeviceGuard guard(input.device());
|
24 |
-
|
25 |
-
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1,
|
26 |
-
pad_y0, pad_y1);
|
27 |
-
}
|
28 |
-
|
29 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
30 |
-
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
31 |
}
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
5 |
+
int up_x, int up_y, int down_x, int down_y,
|
6 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
|
7 |
+
|
8 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
9 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
10 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
11 |
+
|
12 |
+
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
|
13 |
+
int up_x, int up_y, int down_x, int down_y,
|
14 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
15 |
+
CHECK_CUDA(input);
|
16 |
+
CHECK_CUDA(kernel);
|
17 |
+
|
18 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
|
19 |
+
}
|
20 |
+
|
21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
}
|
op/upfirdn2d.py
CHANGED
@@ -1,209 +1,187 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import
|
5 |
-
from torch.
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
ctx.
|
51 |
-
ctx.
|
52 |
-
ctx.
|
53 |
-
ctx.
|
54 |
-
ctx.
|
55 |
-
ctx.
|
56 |
-
ctx.
|
57 |
-
ctx.
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
ctx.
|
73 |
-
ctx.
|
74 |
-
ctx.
|
75 |
-
ctx.
|
76 |
-
ctx.
|
77 |
-
ctx.
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
ctx.
|
107 |
-
|
108 |
-
ctx.
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
out
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
out =
|
178 |
-
out =
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
)
|
184 |
-
out = out
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
:,
|
189 |
-
]
|
190 |
-
|
191 |
-
out = out.permute(0, 3, 1, 2)
|
192 |
-
out = out.reshape(
|
193 |
-
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
194 |
-
)
|
195 |
-
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
196 |
-
out = F.conv2d(out, w)
|
197 |
-
out = out.reshape(
|
198 |
-
-1,
|
199 |
-
minor,
|
200 |
-
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
201 |
-
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
202 |
-
)
|
203 |
-
out = out.permute(0, 2, 3, 1)
|
204 |
-
out = out[:, ::down_y, ::down_x, :]
|
205 |
-
|
206 |
-
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
207 |
-
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
208 |
-
|
209 |
-
return out.view(-1, channel, out_h, out_w)
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.utils.cpp_extension import load
|
6 |
+
|
7 |
+
|
8 |
+
module_path = os.path.dirname(__file__)
|
9 |
+
upfirdn2d_op = load(
|
10 |
+
'upfirdn2d',
|
11 |
+
sources=[
|
12 |
+
os.path.join(module_path, 'upfirdn2d.cpp'),
|
13 |
+
os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
14 |
+
],
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class UpFirDn2dBackward(Function):
|
19 |
+
@staticmethod
|
20 |
+
def forward(
|
21 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
22 |
+
):
|
23 |
+
|
24 |
+
up_x, up_y = up
|
25 |
+
down_x, down_y = down
|
26 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
27 |
+
|
28 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
29 |
+
|
30 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
31 |
+
grad_output,
|
32 |
+
grad_kernel,
|
33 |
+
down_x,
|
34 |
+
down_y,
|
35 |
+
up_x,
|
36 |
+
up_y,
|
37 |
+
g_pad_x0,
|
38 |
+
g_pad_x1,
|
39 |
+
g_pad_y0,
|
40 |
+
g_pad_y1,
|
41 |
+
)
|
42 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
43 |
+
|
44 |
+
ctx.save_for_backward(kernel)
|
45 |
+
|
46 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
47 |
+
|
48 |
+
ctx.up_x = up_x
|
49 |
+
ctx.up_y = up_y
|
50 |
+
ctx.down_x = down_x
|
51 |
+
ctx.down_y = down_y
|
52 |
+
ctx.pad_x0 = pad_x0
|
53 |
+
ctx.pad_x1 = pad_x1
|
54 |
+
ctx.pad_y0 = pad_y0
|
55 |
+
ctx.pad_y1 = pad_y1
|
56 |
+
ctx.in_size = in_size
|
57 |
+
ctx.out_size = out_size
|
58 |
+
|
59 |
+
return grad_input
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def backward(ctx, gradgrad_input):
|
63 |
+
kernel, = ctx.saved_tensors
|
64 |
+
|
65 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
66 |
+
|
67 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
68 |
+
gradgrad_input,
|
69 |
+
kernel,
|
70 |
+
ctx.up_x,
|
71 |
+
ctx.up_y,
|
72 |
+
ctx.down_x,
|
73 |
+
ctx.down_y,
|
74 |
+
ctx.pad_x0,
|
75 |
+
ctx.pad_x1,
|
76 |
+
ctx.pad_y0,
|
77 |
+
ctx.pad_y1,
|
78 |
+
)
|
79 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
80 |
+
gradgrad_out = gradgrad_out.view(
|
81 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
82 |
+
)
|
83 |
+
|
84 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
85 |
+
|
86 |
+
|
87 |
+
class UpFirDn2d(Function):
|
88 |
+
@staticmethod
|
89 |
+
def forward(ctx, input, kernel, up, down, pad):
|
90 |
+
up_x, up_y = up
|
91 |
+
down_x, down_y = down
|
92 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
93 |
+
|
94 |
+
kernel_h, kernel_w = kernel.shape
|
95 |
+
batch, channel, in_h, in_w = input.shape
|
96 |
+
ctx.in_size = input.shape
|
97 |
+
|
98 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
99 |
+
|
100 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
101 |
+
|
102 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
103 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
104 |
+
ctx.out_size = (out_h, out_w)
|
105 |
+
|
106 |
+
ctx.up = (up_x, up_y)
|
107 |
+
ctx.down = (down_x, down_y)
|
108 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
109 |
+
|
110 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
111 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
112 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
113 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
114 |
+
|
115 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
116 |
+
|
117 |
+
out = upfirdn2d_op.upfirdn2d(
|
118 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
119 |
+
)
|
120 |
+
# out = out.view(major, out_h, out_w, minor)
|
121 |
+
out = out.view(-1, channel, out_h, out_w)
|
122 |
+
|
123 |
+
return out
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def backward(ctx, grad_output):
|
127 |
+
kernel, grad_kernel = ctx.saved_tensors
|
128 |
+
|
129 |
+
grad_input = UpFirDn2dBackward.apply(
|
130 |
+
grad_output,
|
131 |
+
kernel,
|
132 |
+
grad_kernel,
|
133 |
+
ctx.up,
|
134 |
+
ctx.down,
|
135 |
+
ctx.pad,
|
136 |
+
ctx.g_pad,
|
137 |
+
ctx.in_size,
|
138 |
+
ctx.out_size,
|
139 |
+
)
|
140 |
+
|
141 |
+
return grad_input, None, None, None, None
|
142 |
+
|
143 |
+
|
144 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
145 |
+
out = UpFirDn2d.apply(
|
146 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
147 |
+
)
|
148 |
+
|
149 |
+
return out
|
150 |
+
|
151 |
+
|
152 |
+
def upfirdn2d_native(
|
153 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
154 |
+
):
|
155 |
+
_, in_h, in_w, minor = input.shape
|
156 |
+
kernel_h, kernel_w = kernel.shape
|
157 |
+
|
158 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
159 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
160 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
161 |
+
|
162 |
+
out = F.pad(
|
163 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
164 |
+
)
|
165 |
+
out = out[
|
166 |
+
:,
|
167 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
168 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
169 |
+
:,
|
170 |
+
]
|
171 |
+
|
172 |
+
out = out.permute(0, 3, 1, 2)
|
173 |
+
out = out.reshape(
|
174 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
175 |
+
)
|
176 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
177 |
+
out = F.conv2d(out, w)
|
178 |
+
out = out.reshape(
|
179 |
+
-1,
|
180 |
+
minor,
|
181 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
182 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
183 |
+
)
|
184 |
+
out = out.permute(0, 2, 3, 1)
|
185 |
+
|
186 |
+
return out[:, ::down_y, ::down_x, :]
|
187 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
op/upfirdn2d_cpu.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
module_path = os.path.dirname(__file__)
|
10 |
+
|
11 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
12 |
+
out = upfirdn2d_native(
|
13 |
+
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
|
14 |
+
)
|
15 |
+
|
16 |
+
return out
|
17 |
+
|
18 |
+
|
19 |
+
def upfirdn2d_native(
|
20 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
21 |
+
):
|
22 |
+
_, channel, in_h, in_w = input.shape
|
23 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
24 |
+
|
25 |
+
_, in_h, in_w, minor = input.shape
|
26 |
+
kernel_h, kernel_w = kernel.shape
|
27 |
+
|
28 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
29 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
30 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
31 |
+
|
32 |
+
out = F.pad(
|
33 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
34 |
+
)
|
35 |
+
out = out[
|
36 |
+
:,
|
37 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
38 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
39 |
+
:,
|
40 |
+
]
|
41 |
+
|
42 |
+
out = out.permute(0, 3, 1, 2)
|
43 |
+
out = out.reshape(
|
44 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
45 |
+
)
|
46 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
47 |
+
out = F.conv2d(out, w)
|
48 |
+
out = out.reshape(
|
49 |
+
-1,
|
50 |
+
minor,
|
51 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
52 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
53 |
+
)
|
54 |
+
out = out.permute(0, 2, 3, 1)
|
55 |
+
out = out[:, ::down_y, ::down_x, :]
|
56 |
+
|
57 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
58 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
59 |
+
|
60 |
+
return out.view(-1, channel, out_h, out_w)
|
op/upfirdn2d_kernel.cu
CHANGED
@@ -1,369 +1,272 @@
|
|
1 |
-
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
-
//
|
3 |
-
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
-
// To view a copy of this license, visit
|
5 |
-
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
-
|
7 |
-
#include <torch/types.h>
|
8 |
-
|
9 |
-
#include <ATen/ATen.h>
|
10 |
-
#include <ATen/AccumulateType.h>
|
11 |
-
#include <ATen/cuda/
|
12 |
-
#include <ATen/cuda/
|
13 |
-
|
14 |
-
#include <cuda.h>
|
15 |
-
#include <cuda_runtime.h>
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
c
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
}
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
}
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
273 |
-
mode = 4;
|
274 |
-
tile_out_h = 16;
|
275 |
-
tile_out_w = 64;
|
276 |
-
}
|
277 |
-
|
278 |
-
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
279 |
-
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
280 |
-
mode = 5;
|
281 |
-
tile_out_h = 8;
|
282 |
-
tile_out_w = 32;
|
283 |
-
}
|
284 |
-
|
285 |
-
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
286 |
-
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
287 |
-
mode = 6;
|
288 |
-
tile_out_h = 8;
|
289 |
-
tile_out_w = 32;
|
290 |
-
}
|
291 |
-
|
292 |
-
dim3 block_size;
|
293 |
-
dim3 grid_size;
|
294 |
-
|
295 |
-
if (tile_out_h > 0 && tile_out_w > 0) {
|
296 |
-
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
297 |
-
p.loop_x = 1;
|
298 |
-
block_size = dim3(32 * 8, 1, 1);
|
299 |
-
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
300 |
-
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
301 |
-
(p.major_dim - 1) / p.loop_major + 1);
|
302 |
-
} else {
|
303 |
-
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
304 |
-
p.loop_x = 4;
|
305 |
-
block_size = dim3(4, 32, 1);
|
306 |
-
grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
|
307 |
-
(p.out_w - 1) / (p.loop_x * block_size.y) + 1,
|
308 |
-
(p.major_dim - 1) / p.loop_major + 1);
|
309 |
-
}
|
310 |
-
|
311 |
-
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
312 |
-
switch (mode) {
|
313 |
-
case 1:
|
314 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64>
|
315 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
316 |
-
x.data_ptr<scalar_t>(),
|
317 |
-
k.data_ptr<scalar_t>(), p);
|
318 |
-
|
319 |
-
break;
|
320 |
-
|
321 |
-
case 2:
|
322 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64>
|
323 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
324 |
-
x.data_ptr<scalar_t>(),
|
325 |
-
k.data_ptr<scalar_t>(), p);
|
326 |
-
|
327 |
-
break;
|
328 |
-
|
329 |
-
case 3:
|
330 |
-
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64>
|
331 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
332 |
-
x.data_ptr<scalar_t>(),
|
333 |
-
k.data_ptr<scalar_t>(), p);
|
334 |
-
|
335 |
-
break;
|
336 |
-
|
337 |
-
case 4:
|
338 |
-
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64>
|
339 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
340 |
-
x.data_ptr<scalar_t>(),
|
341 |
-
k.data_ptr<scalar_t>(), p);
|
342 |
-
|
343 |
-
break;
|
344 |
-
|
345 |
-
case 5:
|
346 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
347 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
348 |
-
x.data_ptr<scalar_t>(),
|
349 |
-
k.data_ptr<scalar_t>(), p);
|
350 |
-
|
351 |
-
break;
|
352 |
-
|
353 |
-
case 6:
|
354 |
-
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
355 |
-
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
356 |
-
x.data_ptr<scalar_t>(),
|
357 |
-
k.data_ptr<scalar_t>(), p);
|
358 |
-
|
359 |
-
break;
|
360 |
-
|
361 |
-
default:
|
362 |
-
upfirdn2d_kernel_large<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
363 |
-
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
364 |
-
k.data_ptr<scalar_t>(), p);
|
365 |
-
}
|
366 |
-
});
|
367 |
-
|
368 |
-
return out;
|
369 |
}
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
19 |
+
int c = a / b;
|
20 |
+
|
21 |
+
if (c * b > a) {
|
22 |
+
c--;
|
23 |
+
}
|
24 |
+
|
25 |
+
return c;
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
struct UpFirDn2DKernelParams {
|
30 |
+
int up_x;
|
31 |
+
int up_y;
|
32 |
+
int down_x;
|
33 |
+
int down_y;
|
34 |
+
int pad_x0;
|
35 |
+
int pad_x1;
|
36 |
+
int pad_y0;
|
37 |
+
int pad_y1;
|
38 |
+
|
39 |
+
int major_dim;
|
40 |
+
int in_h;
|
41 |
+
int in_w;
|
42 |
+
int minor_dim;
|
43 |
+
int kernel_h;
|
44 |
+
int kernel_w;
|
45 |
+
int out_h;
|
46 |
+
int out_w;
|
47 |
+
int loop_major;
|
48 |
+
int loop_x;
|
49 |
+
};
|
50 |
+
|
51 |
+
|
52 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
53 |
+
__global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) {
|
54 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
55 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
56 |
+
|
57 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
58 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
59 |
+
|
60 |
+
int minor_idx = blockIdx.x;
|
61 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
62 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
63 |
+
tile_out_y *= tile_out_h;
|
64 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
65 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
66 |
+
|
67 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) {
|
68 |
+
return;
|
69 |
+
}
|
70 |
+
|
71 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) {
|
72 |
+
int ky = tap_idx / kernel_w;
|
73 |
+
int kx = tap_idx - ky * kernel_w;
|
74 |
+
scalar_t v = 0.0;
|
75 |
+
|
76 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
77 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
78 |
+
}
|
79 |
+
|
80 |
+
sk[ky][kx] = v;
|
81 |
+
}
|
82 |
+
|
83 |
+
for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) {
|
84 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) {
|
85 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
86 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
87 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
88 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
89 |
+
|
90 |
+
__syncthreads();
|
91 |
+
|
92 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) {
|
93 |
+
int rel_in_y = in_idx / tile_in_w;
|
94 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
95 |
+
int in_x = rel_in_x + tile_in_x;
|
96 |
+
int in_y = rel_in_y + tile_in_y;
|
97 |
+
|
98 |
+
scalar_t v = 0.0;
|
99 |
+
|
100 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
101 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx];
|
102 |
+
}
|
103 |
+
|
104 |
+
sx[rel_in_y][rel_in_x] = v;
|
105 |
+
}
|
106 |
+
|
107 |
+
__syncthreads();
|
108 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) {
|
109 |
+
int rel_out_y = out_idx / tile_out_w;
|
110 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
111 |
+
int out_x = rel_out_x + tile_out_x;
|
112 |
+
int out_y = rel_out_y + tile_out_y;
|
113 |
+
|
114 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
115 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
116 |
+
int in_x = floor_div(mid_x, up_x);
|
117 |
+
int in_y = floor_div(mid_y, up_y);
|
118 |
+
int rel_in_x = in_x - tile_in_x;
|
119 |
+
int rel_in_y = in_y - tile_in_y;
|
120 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
121 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
122 |
+
|
123 |
+
scalar_t v = 0.0;
|
124 |
+
|
125 |
+
#pragma unroll
|
126 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
127 |
+
#pragma unroll
|
128 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
129 |
+
v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
130 |
+
|
131 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
132 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
}
|
137 |
+
}
|
138 |
+
|
139 |
+
|
140 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
141 |
+
int up_x, int up_y, int down_x, int down_y,
|
142 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
143 |
+
int curDevice = -1;
|
144 |
+
cudaGetDevice(&curDevice);
|
145 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
146 |
+
|
147 |
+
UpFirDn2DKernelParams p;
|
148 |
+
|
149 |
+
auto x = input.contiguous();
|
150 |
+
auto k = kernel.contiguous();
|
151 |
+
|
152 |
+
p.major_dim = x.size(0);
|
153 |
+
p.in_h = x.size(1);
|
154 |
+
p.in_w = x.size(2);
|
155 |
+
p.minor_dim = x.size(3);
|
156 |
+
p.kernel_h = k.size(0);
|
157 |
+
p.kernel_w = k.size(1);
|
158 |
+
p.up_x = up_x;
|
159 |
+
p.up_y = up_y;
|
160 |
+
p.down_x = down_x;
|
161 |
+
p.down_y = down_y;
|
162 |
+
p.pad_x0 = pad_x0;
|
163 |
+
p.pad_x1 = pad_x1;
|
164 |
+
p.pad_y0 = pad_y0;
|
165 |
+
p.pad_y1 = pad_y1;
|
166 |
+
|
167 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y;
|
168 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x;
|
169 |
+
|
170 |
+
auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
171 |
+
|
172 |
+
int mode = -1;
|
173 |
+
|
174 |
+
int tile_out_h;
|
175 |
+
int tile_out_w;
|
176 |
+
|
177 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
178 |
+
mode = 1;
|
179 |
+
tile_out_h = 16;
|
180 |
+
tile_out_w = 64;
|
181 |
+
}
|
182 |
+
|
183 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) {
|
184 |
+
mode = 2;
|
185 |
+
tile_out_h = 16;
|
186 |
+
tile_out_w = 64;
|
187 |
+
}
|
188 |
+
|
189 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
190 |
+
mode = 3;
|
191 |
+
tile_out_h = 16;
|
192 |
+
tile_out_w = 64;
|
193 |
+
}
|
194 |
+
|
195 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
196 |
+
mode = 4;
|
197 |
+
tile_out_h = 16;
|
198 |
+
tile_out_w = 64;
|
199 |
+
}
|
200 |
+
|
201 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
202 |
+
mode = 5;
|
203 |
+
tile_out_h = 8;
|
204 |
+
tile_out_w = 32;
|
205 |
+
}
|
206 |
+
|
207 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
208 |
+
mode = 6;
|
209 |
+
tile_out_h = 8;
|
210 |
+
tile_out_w = 32;
|
211 |
+
}
|
212 |
+
|
213 |
+
dim3 block_size;
|
214 |
+
dim3 grid_size;
|
215 |
+
|
216 |
+
if (tile_out_h > 0 && tile_out_w) {
|
217 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
218 |
+
p.loop_x = 1;
|
219 |
+
block_size = dim3(32 * 8, 1, 1);
|
220 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
221 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
222 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
223 |
+
}
|
224 |
+
|
225 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
226 |
+
switch (mode) {
|
227 |
+
case 1:
|
228 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
229 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
230 |
+
);
|
231 |
+
|
232 |
+
break;
|
233 |
+
|
234 |
+
case 2:
|
235 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
236 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
237 |
+
);
|
238 |
+
|
239 |
+
break;
|
240 |
+
|
241 |
+
case 3:
|
242 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
243 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
244 |
+
);
|
245 |
+
|
246 |
+
break;
|
247 |
+
|
248 |
+
case 4:
|
249 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
250 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
251 |
+
);
|
252 |
+
|
253 |
+
break;
|
254 |
+
|
255 |
+
case 5:
|
256 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
257 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
258 |
+
);
|
259 |
+
|
260 |
+
break;
|
261 |
+
|
262 |
+
case 6:
|
263 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
264 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
265 |
+
);
|
266 |
+
|
267 |
+
break;
|
268 |
+
}
|
269 |
+
});
|
270 |
+
|
271 |
+
return out;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
}
|