richardorama
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -127,41 +127,73 @@ else:
|
|
127 |
|
128 |
|
129 |
|
130 |
-
# Load pre-trained GPT-2 model and tokenizer
|
131 |
-
model_name = "gpt-3.5-turbo" # "gpt2" # Use "gpt-3.5-turbo" or another model from Hugging Face if needed
|
132 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
133 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
134 |
|
135 |
-
# Initialize the text generation pipeline
|
136 |
-
gpt_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
137 |
|
138 |
-
# Streamlit UI
|
139 |
-
st.
|
140 |
|
141 |
-
if 'conversation' not in st.session_state:
|
142 |
-
|
143 |
|
144 |
-
def chat_with_gpt(user_input):
|
145 |
-
|
146 |
-
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
|
156 |
-
# Text input for user query
|
157 |
-
user_input = st.text_input("You:", "")
|
158 |
|
159 |
-
if st.button("Send"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
if user_input:
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
# Display conversation history
|
164 |
-
st.text_area("Conversation", value=st.session_state.conversation, height=400)
|
165 |
|
166 |
# ################ END #################
|
167 |
|
|
|
127 |
|
128 |
|
129 |
|
130 |
+
# # Load pre-trained GPT-2 model and tokenizer
|
131 |
+
# model_name = "gpt-3.5-turbo" # "gpt2" # Use "gpt-3.5-turbo" or another model from Hugging Face if needed
|
132 |
+
# model = GPT2LMHeadModel.from_pretrained(model_name)
|
133 |
+
# tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
134 |
|
135 |
+
# # Initialize the text generation pipeline
|
136 |
+
# gpt_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
137 |
|
138 |
+
# # Streamlit UI
|
139 |
+
# st.markdown("<h3 style='text-align: center; font-size: 20px;'>Chat with GPT</h3>", unsafe_allow_html=True)
|
140 |
|
141 |
+
# if 'conversation' not in st.session_state:
|
142 |
+
# st.session_state.conversation = ""
|
143 |
|
144 |
+
# def chat_with_gpt(user_input):
|
145 |
+
# # Append user input to the conversation
|
146 |
+
# st.session_state.conversation += f"User: {user_input}\n"
|
147 |
|
148 |
+
# # Generate response
|
149 |
+
# response = gpt_pipeline(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
|
150 |
+
# response_text = response.replace(user_input, '') # Strip the user input part from response
|
151 |
|
152 |
+
# # Append GPT's response to the conversation
|
153 |
+
# st.session_state.conversation += f"GPT: {response_text}\n"
|
154 |
+
# return response_text
|
155 |
|
156 |
+
# # Text input for user query
|
157 |
+
# user_input = st.text_input("You:", "")
|
158 |
|
159 |
+
# if st.button("Send"):
|
160 |
+
# if user_input:
|
161 |
+
# chat_with_gpt(user_input)
|
162 |
+
|
163 |
+
# # Display conversation history
|
164 |
+
# st.text_area("Conversation", value=st.session_state.conversation, height=400)
|
165 |
+
|
166 |
+
|
167 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
168 |
+
import torch
|
169 |
+
|
170 |
+
# Load the model and tokenizer from Hugging Face (LLaMA or OpenAssistant)
|
171 |
+
# Example: "OpenAssistant/oa-v1" (Open Assistant) or "huggyllama/llama-7b" (LLaMA)
|
172 |
+
|
173 |
+
MODEL_NAME = "OpenAssistant/oa_v1" # You can replace this with a LLaMA model like "huggyllama/llama-7b"
|
174 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
175 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
176 |
+
|
177 |
+
# Streamlit UI for input
|
178 |
+
st.title("Chat with OpenAssistant/LLaMA")
|
179 |
+
|
180 |
+
# Input text area
|
181 |
+
user_input = st.text_area("You:", "", height=150)
|
182 |
+
|
183 |
+
if st.button('Generate Response'):
|
184 |
if user_input:
|
185 |
+
# Tokenize the input and generate response
|
186 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
187 |
+
outputs = model.generate(**inputs, max_length=150)
|
188 |
+
|
189 |
+
# Decode the generated response
|
190 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
191 |
+
|
192 |
+
# Display the model's response
|
193 |
+
st.write("Assistant: ", response)
|
194 |
+
else:
|
195 |
+
st.warning('Please enter some text to get a response!')
|
196 |
|
|
|
|
|
197 |
|
198 |
# ################ END #################
|
199 |
|