richardorama commited on
Commit
f5cd439
β€’
1 Parent(s): 61944f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -78
app.py CHANGED
@@ -5,88 +5,11 @@
5
  #st.write(x, 'squared is', x * x)
6
 
7
  import streamlit as st
8
- from transformers import pipeline
9
  import ast
10
 
11
  st.title("Assorted Language Tools - AI Craze")
12
 
13
- # ################ CHAT BOT #################
14
-
15
- # # Load the GPT model
16
- # generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
17
-
18
- # # Streamlit chat UI
19
- # #st.title("GPT-3 Chatbox")
20
-
21
- # # user_input = st.text_input("You: ", "Hello, how are you?")
22
-
23
- # # if user_input:
24
- # # response = generator(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
25
- # # st.write(f"GPT-3: {response}")
26
-
27
- # # Define the summarization function
28
- # def chat(txt):
29
- # st.write('\n\n')
30
- # #st.write(txt[:100]) # Display the first 100 characters of the article
31
- # #st.write('--------------------------------------------------------------')
32
- # #summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
33
- # #st.write(summary[0]['summary_text'])
34
- # response = generator(txt, max_length=500, num_return_sequences=1)[0]['generated_text']
35
- # st.write(f"GPT-3: {response}")
36
-
37
- # DEFAULT_CHAT = ""
38
- # # Create a text area for user input
39
- # CHAT = st.sidebar.text_area('Enter Chat (String)', DEFAULT_CHAT, height=150)
40
-
41
- # # Enable the button only if there is text in the CHAT variable
42
- # if CHAT:
43
- # if st.sidebar.button('Chat Statement'):
44
- # # Call your Summarize function here
45
- # chat(CHAT) # Directly pass the your
46
- # else:
47
- # st.sidebar.button('Chat Statement', disabled=True)
48
- # st.warning('πŸ‘ˆ Please enter Chat!')
49
-
50
-
51
- import streamlit as st
52
- from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
53
-
54
- # Load pre-trained GPT-2 model and tokenizer
55
- model_name = "gpt2" # Use "gpt-3.5-turbo" or another model from Hugging Face if needed
56
- model = GPT2LMHeadModel.from_pretrained(model_name)
57
- tokenizer = GPT2Tokenizer.from_pretrained(model_name)
58
-
59
- # Initialize the text generation pipeline
60
- gpt_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
61
-
62
- # Streamlit UI
63
- st.title("Chat with GPT-2")
64
-
65
- if 'conversation' not in st.session_state:
66
- st.session_state.conversation = ""
67
-
68
- def chat_with_gpt(user_input):
69
- # Append user input to the conversation
70
- st.session_state.conversation += f"User: {user_input}\n"
71
-
72
- # Generate response
73
- response = gpt_pipeline(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
74
- response_text = response.replace(user_input, '') # Strip the user input part from response
75
-
76
- # Append GPT's response to the conversation
77
- st.session_state.conversation += f"GPT: {response_text}\n"
78
- return response_text
79
-
80
- # Text input for user query
81
- user_input = st.text_input("You:", "")
82
-
83
- if st.button("Send"):
84
- if user_input:
85
- chat_with_gpt(user_input)
86
-
87
- # Display conversation history
88
- st.text_area("Conversation", value=st.session_state.conversation, height=400)
89
-
90
 
91
  ################ STATEMENT SUMMARIZATION #################
92
 
@@ -164,6 +87,85 @@ else:
164
  st.warning('πŸ‘ˆ Please enter Sentiment!')
165
 
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  # Add a footnote at the bottom
168
  st.markdown("---") # Horizontal line to separate content from footnote
169
  st.markdown("Orama's AI Craze")
 
5
  #st.write(x, 'squared is', x * x)
6
 
7
  import streamlit as st
8
+ from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
9
  import ast
10
 
11
  st.title("Assorted Language Tools - AI Craze")
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  ################ STATEMENT SUMMARIZATION #################
15
 
 
87
  st.warning('πŸ‘ˆ Please enter Sentiment!')
88
 
89
 
90
+ # ################ CHAT BOT #################
91
+
92
+ # # Load the GPT model
93
+ # generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
94
+
95
+ # # Streamlit chat UI
96
+ # #st.title("GPT-3 Chatbox")
97
+
98
+ # # user_input = st.text_input("You: ", "Hello, how are you?")
99
+
100
+ # # if user_input:
101
+ # # response = generator(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
102
+ # # st.write(f"GPT-3: {response}")
103
+
104
+ # # Define the summarization function
105
+ # def chat(txt):
106
+ # st.write('\n\n')
107
+ # #st.write(txt[:100]) # Display the first 100 characters of the article
108
+ # #st.write('--------------------------------------------------------------')
109
+ # #summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
110
+ # #st.write(summary[0]['summary_text'])
111
+ # response = generator(txt, max_length=500, num_return_sequences=1)[0]['generated_text']
112
+ # st.write(f"GPT-3: {response}")
113
+
114
+ # DEFAULT_CHAT = ""
115
+ # # Create a text area for user input
116
+ # CHAT = st.sidebar.text_area('Enter Chat (String)', DEFAULT_CHAT, height=150)
117
+
118
+ # # Enable the button only if there is text in the CHAT variable
119
+ # if CHAT:
120
+ # if st.sidebar.button('Chat Statement'):
121
+ # # Call your Summarize function here
122
+ # chat(CHAT) # Directly pass the your
123
+ # else:
124
+ # st.sidebar.button('Chat Statement', disabled=True)
125
+ # st.warning('πŸ‘ˆ Please enter Chat!')
126
+
127
+
128
+
129
+
130
+ # Load pre-trained GPT-2 model and tokenizer
131
+ model_name = "gpt-3.5-turbo" # "gpt2" # Use "gpt-3.5-turbo" or another model from Hugging Face if needed
132
+ model = GPT2LMHeadModel.from_pretrained(model_name)
133
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
134
+
135
+ # Initialize the text generation pipeline
136
+ gpt_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
137
+
138
+ # Streamlit UI
139
+ st.title("Chat with GPT-2")
140
+
141
+ if 'conversation' not in st.session_state:
142
+ st.session_state.conversation = ""
143
+
144
+ def chat_with_gpt(user_input):
145
+ # Append user input to the conversation
146
+ st.session_state.conversation += f"User: {user_input}\n"
147
+
148
+ # Generate response
149
+ response = gpt_pipeline(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
150
+ response_text = response.replace(user_input, '') # Strip the user input part from response
151
+
152
+ # Append GPT's response to the conversation
153
+ st.session_state.conversation += f"GPT: {response_text}\n"
154
+ return response_text
155
+
156
+ # Text input for user query
157
+ user_input = st.text_input("You:", "")
158
+
159
+ if st.button("Send"):
160
+ if user_input:
161
+ chat_with_gpt(user_input)
162
+
163
+ # Display conversation history
164
+ st.text_area("Conversation", value=st.session_state.conversation, height=400)
165
+
166
+ # ################ END #################
167
+
168
+
169
  # Add a footnote at the bottom
170
  st.markdown("---") # Horizontal line to separate content from footnote
171
  st.markdown("Orama's AI Craze")