ragflow / docs /guides /deploy_local_llm.md
writinwaters
fixed a format issue for docusaurus publication (#871)
ad3054c
|
raw
history blame
2.68 kB
metadata
sidebar_position: 5
slug: /deploy_local_llm

Deploy a local LLM

RAGFlow supports deploying LLMs locally using Ollama or Xinference.

Ollama

One-click deployment of local LLMs, that is Ollama.

Install

Launch Ollama

Decide which LLM you want to deploy (here's a list for supported LLM), say, mistral:

$ ollama run mistral

Or,

$ docker exec -it ollama ollama run mistral

Use Ollama in RAGFlow

  • Go to 'Settings > Model Providers > Models to be added > Ollama'.

Base URL: Enter the base URL where the Ollama service is accessible, like, http://<your-ollama-endpoint-domain>:11434.

  • Use Ollama Models.

Xinference

Xorbits Inference(Xinference) empowers you to unleash the full potential of cutting-edge AI models.

Install

To start a local instance of Xinference, run the following command:

$ xinference-local --host 0.0.0.0 --port 9997

Launch Xinference

Decide which LLM you want to deploy (here's a list for supported LLM), say, mistral. Execute the following command to launch the model, remember to replace ${quantization} with your chosen quantization method from the options listed above:

$ xinference launch -u mistral --model-name mistral-v0.1 --size-in-billions 7 --model-format pytorch --quantization ${quantization}

Use Xinference in RAGFlow

  • Go to 'Settings > Model Providers > Models to be added > Xinference'.

Base URL: Enter the base URL where the Xinference service is accessible, like, http://<your-xinference-endpoint-domain>:9997/v1.

  • Use Xinference Models.