|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
|
|
from smolagents import ( |
|
CodeAgent, |
|
DuckDuckGoSearchTool, |
|
LiteLLMModel, |
|
ToolCallingAgent, |
|
) |
|
|
|
from tools.text_inspector_tool import TextInspectorTool |
|
from tools.text_web_browser import ( |
|
ArchiveSearchTool, |
|
FinderTool, |
|
FindNextTool, |
|
PageDownTool, |
|
PageUpTool, |
|
SimpleTextBrowser, |
|
VisitTool, |
|
) |
|
from tools.visual_qa import visualizer |
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class GaiaAgent: |
|
def __init__(self, model_id: str = "o3"): |
|
self._model = self._create_model(model_id) |
|
self._text_limit = 100000 |
|
text_webbrowser_agent = self._create_text_webbrowser_agent() |
|
self._manager_agent = CodeAgent( |
|
model=self._model, |
|
tools=[visualizer, TextInspectorTool(self._model, self._text_limit)], |
|
max_steps=12, |
|
verbosity_level=2, |
|
additional_authorized_imports=["*"], |
|
planning_interval=4, |
|
managed_agents=[text_webbrowser_agent], |
|
) |
|
|
|
print("GaiaAgent initialized.") |
|
|
|
def _create_model(self, model_id): |
|
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} |
|
model_params = { |
|
"model_id": model_id, |
|
"custom_role_conversions": custom_role_conversions, |
|
"max_completion_tokens": 8192, |
|
"reasoning_effort": "high", |
|
} |
|
return LiteLLMModel(**model_params) |
|
|
|
def _create_text_webbrowser_agent(self): |
|
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" |
|
|
|
BROWSER_CONFIG = { |
|
"viewport_size": 1024 * 5, |
|
"downloads_folder": "downloads_folder", |
|
"request_kwargs": { |
|
"headers": {"User-Agent": user_agent}, |
|
"timeout": 300, |
|
}, |
|
"serpapi_key": os.getenv("SERPAPI_API_KEY"), |
|
} |
|
|
|
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) |
|
|
|
browser = SimpleTextBrowser(**BROWSER_CONFIG) |
|
WEB_TOOLS = [ |
|
DuckDuckGoSearchTool(), |
|
VisitTool(browser), |
|
PageUpTool(browser), |
|
PageDownTool(browser), |
|
FinderTool(browser), |
|
FindNextTool(browser), |
|
ArchiveSearchTool(browser), |
|
TextInspectorTool(self._model, self._text_limit), |
|
] |
|
text_webbrowser_agent = ToolCallingAgent( |
|
model=self._model, |
|
tools=WEB_TOOLS, |
|
max_steps=20, |
|
verbosity_level=2, |
|
planning_interval=4, |
|
name="search_agent", |
|
description="""A team member that will search the internet to answer your question. |
|
Ask him for all your questions that require browsing the web. |
|
Provide him as much context as possible, in particular if you need to search on a specific timeframe! |
|
And don't hesitate to provide him with a complex search task, like finding a difference between two webpages. |
|
Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords. |
|
""", |
|
provide_run_summary=True, |
|
) |
|
text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files. |
|
If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it. |
|
Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information.""" |
|
|
|
return text_webbrowser_agent |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
answer = self._manager_agent.run(question) |
|
print(f"Agent returning fixed answer: {answer}") |
|
return answer |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = GaiaAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|