Spaces:
Runtime error
Runtime error
parquet save
Browse files- prepare.py +4 -5
- run.py +5 -6
prepare.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import pickle
|
2 |
import datasets
|
3 |
import os
|
|
|
4 |
|
5 |
if __name__ == "__main__":
|
6 |
-
cache_file = "dataset_cache.
|
7 |
if os.path.exists(cache_file):
|
8 |
# Load dataset from cache
|
9 |
-
|
10 |
-
dataset = pickle.load(file)
|
11 |
print("Dataset loaded from cache.")
|
12 |
else:
|
13 |
# Load dataset using datasets.load_dataset()
|
@@ -15,8 +15,7 @@ if __name__ == "__main__":
|
|
15 |
print("Dataset loaded using datasets.load_dataset().")
|
16 |
|
17 |
# Save dataset to cache
|
18 |
-
|
19 |
-
pickle.dump(dataset, file)
|
20 |
|
21 |
print("Dataset saved to cache.")
|
22 |
|
|
|
1 |
import pickle
|
2 |
import datasets
|
3 |
import os
|
4 |
+
import pandas as pd
|
5 |
|
6 |
if __name__ == "__main__":
|
7 |
+
cache_file = "dataset_cache.parquet"
|
8 |
if os.path.exists(cache_file):
|
9 |
# Load dataset from cache
|
10 |
+
df = pd.read_parquet(cache_file)
|
|
|
11 |
print("Dataset loaded from cache.")
|
12 |
else:
|
13 |
# Load dataset using datasets.load_dataset()
|
|
|
15 |
print("Dataset loaded using datasets.load_dataset().")
|
16 |
|
17 |
# Save dataset to cache
|
18 |
+
df.to_parquet(cache_file)
|
|
|
19 |
|
20 |
print("Dataset saved to cache.")
|
21 |
|
run.py
CHANGED
@@ -2,13 +2,13 @@ import pickle
|
|
2 |
import datasets
|
3 |
from renumics import spotlight
|
4 |
import os
|
|
|
5 |
|
6 |
if __name__ == "__main__":
|
7 |
-
cache_file = "dataset_cache.
|
8 |
if os.path.exists(cache_file):
|
9 |
# Load dataset from cache
|
10 |
-
|
11 |
-
dataset = pickle.load(file)
|
12 |
print("Dataset loaded from cache.")
|
13 |
else:
|
14 |
# Load dataset using datasets.load_dataset()
|
@@ -16,13 +16,12 @@ if __name__ == "__main__":
|
|
16 |
print("Dataset loaded using datasets.load_dataset().")
|
17 |
|
18 |
# Save dataset to cache
|
19 |
-
|
20 |
-
pickle.dump(dataset, file)
|
21 |
|
22 |
print("Dataset saved to cache.")
|
23 |
|
24 |
|
25 |
-
df = dataset.to_pandas()
|
26 |
df_show = df.drop(columns=['embedding', 'probabilities'])
|
27 |
while True:
|
28 |
view = spotlight.show(df_show.sample(5000, random_state=1), port=7860, host="0.0.0.0",
|
|
|
2 |
import datasets
|
3 |
from renumics import spotlight
|
4 |
import os
|
5 |
+
import pandas as pd
|
6 |
|
7 |
if __name__ == "__main__":
|
8 |
+
cache_file = "dataset_cache.parquet"
|
9 |
if os.path.exists(cache_file):
|
10 |
# Load dataset from cache
|
11 |
+
df = pd.read_parquet(cache_file)
|
|
|
12 |
print("Dataset loaded from cache.")
|
13 |
else:
|
14 |
# Load dataset using datasets.load_dataset()
|
|
|
16 |
print("Dataset loaded using datasets.load_dataset().")
|
17 |
|
18 |
# Save dataset to cache
|
19 |
+
df.to_parquet(cache_file)
|
|
|
20 |
|
21 |
print("Dataset saved to cache.")
|
22 |
|
23 |
|
24 |
+
#df = dataset.to_pandas()
|
25 |
df_show = df.drop(columns=['embedding', 'probabilities'])
|
26 |
while True:
|
27 |
view = spotlight.show(df_show.sample(5000, random_state=1), port=7860, host="0.0.0.0",
|