Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from collections import Counter | |
from os import path as osp | |
from torch import distributed as dist | |
from tqdm import tqdm | |
import cv2 | |
import os | |
from basicsr.metrics import calculate_metric | |
from basicsr.utils import get_root_logger, imwrite, tensor2img | |
from basicsr.utils.dist_util import get_dist_info | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from .sr_model import SRModel | |
class VideoRecurrentModel(SRModel): | |
"""Video Recurrent SR model (merged with VideoBaseModel).""" | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
flow_lr_mul = train_opt.get('flow_lr_mul', 1) | |
logger = get_root_logger() | |
logger.info( | |
f'Multiple the learning rate for flow network with {flow_lr_mul}.') | |
if flow_lr_mul == 1: | |
optim_params = self.net_g.parameters() | |
else: # separate flow params and normal params for different lr | |
normal_params = [] | |
flow_params = [] | |
for name, param in self.net_g.named_parameters(): | |
if 'spynet' in name: | |
flow_params.append(param) | |
else: | |
normal_params.append(param) | |
optim_params = [ | |
{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_g']['lr'] | |
}, | |
{ | |
'params': flow_params, | |
'lr': train_opt['optim_g']['lr'] * flow_lr_mul | |
}, | |
] | |
optim_type = train_opt['optim_g'].pop('type') | |
self.optimizer_g = self.get_optimizer( | |
optim_type, optim_params, **train_opt['optim_g']) | |
self.optimizers.append(self.optimizer_g) | |
def optimize_parameters(self, current_iter): | |
if hasattr(self, 'fix_flow_iter') and self.fix_flow_iter: | |
logger = get_root_logger() | |
if current_iter == 1: | |
logger.info( | |
f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.') | |
for name, param in self.net_g.named_parameters(): | |
if 'spynet' in name or 'edvr' in name: | |
param.requires_grad_(False) | |
elif current_iter == self.fix_flow_iter: | |
logger.warning('Train all the parameters.') | |
self.net_g.requires_grad_(True) | |
super(VideoRecurrentModel, self).optimize_parameters(current_iter) | |
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
dataset = dataloader.dataset | |
dataset_name = dataset.opt['name'] | |
with_metrics = self.opt['val']['metrics'] is not None | |
save_video = self.opt['val'].get('save_video', False) | |
# initialize self.metric_results | |
# It is a dict: { | |
# 'folder1': tensor (num_frame x len(metrics)), | |
# 'folder2': tensor (num_frame x len(metrics)) | |
# } | |
if with_metrics: | |
if not hasattr(self, 'metric_results'): # only execute in the first run | |
self.metric_results = {} | |
num_frame_each_folder = Counter(dataset.data_info['folder']) | |
for folder, num_frame in num_frame_each_folder.items(): | |
self.metric_results[folder] = torch.zeros( | |
num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda') | |
# initialize the best metric results | |
self._initialize_best_metric_results(dataset_name) | |
# zero self.metric_results | |
rank, world_size = get_dist_info() | |
if with_metrics: | |
for _, tensor in self.metric_results.items(): | |
tensor.zero_() | |
metric_data = dict() | |
num_folders = len(dataset) | |
num_pad = (world_size - (num_folders % world_size)) % world_size | |
if rank == 0: | |
pbar = tqdm(total=len(dataset), unit='folder') | |
# Will evaluate (num_folders + num_pad) times, but only the first num_folders results will be recorded. | |
# (To avoid wait-dead) | |
for i in range(rank, num_folders + num_pad, world_size): | |
idx = min(i, num_folders - 1) | |
val_data = dataset[idx] | |
folder = val_data['folder'] | |
# compute outputs | |
val_data['lq'].unsqueeze_(0) | |
val_data['gt'].unsqueeze_(0) | |
self.feed_data(val_data) | |
val_data['lq'].squeeze_(0) | |
val_data['gt'].squeeze_(0) | |
self.test() | |
visuals = self.get_current_visuals() | |
# tentative for out of GPU memory | |
del self.lq | |
del self.output | |
if 'gt' in visuals: | |
del self.gt | |
torch.cuda.empty_cache() | |
if hasattr(self, 'center_frame_only') and self.center_frame_only: | |
visuals['result'] = visuals['result'].unsqueeze(1) | |
if 'gt' in visuals: | |
visuals['gt'] = visuals['gt'].unsqueeze(1) | |
# # For EDVR | |
# result = visuals['result'] | |
# result_img = tensor2img([result]) | |
# if save_img: | |
# if self.opt['is_train']: | |
# raise NotImplementedError( | |
# 'saving image is not supported during training.') | |
# else: | |
# img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, | |
# f"{idx:08d}.png") | |
# # image name only for REDS dataset | |
# imwrite(result_img, img_path) | |
# evaluate | |
if i < num_folders: | |
video_writer = None | |
for idx in range(visuals['result'].size(1)): | |
result = visuals['result'][0, idx, :, :, :] | |
result_img = tensor2img( | |
[result], min_max=(-1, 1)) # uint8, bgr | |
metric_data['img1'] = result_img | |
if 'gt' in visuals: | |
gt = visuals['gt'][0, idx, :, :, :] | |
gt_img = tensor2img( | |
[gt], min_max=(-1, 1)) # uint8, bgr | |
metric_data['img2'] = gt_img | |
if save_img: | |
if self.opt['is_train']: | |
raise NotImplementedError( | |
'saving image is not supported during training.') | |
else: | |
if hasattr(self, 'center_frame_only') and self.center_frame_only: # vimeo-90k | |
clip_ = val_data['lq_path'].split('/')[-3] | |
seq_ = val_data['lq_path'].split('/')[-2] | |
name_ = f'{clip_}_{seq_}' | |
img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, | |
f"{name_}_{self.opt['name']}.png") | |
else: # others | |
img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, | |
f"{idx:08d}.png") | |
imwrite(result_img, img_path) | |
if save_video: | |
if self.opt['is_train']: | |
raise NotImplementedError( | |
'saving image is not supported during training.') | |
else: | |
if video_writer is None: | |
video_output_path = osp.join(self.opt['path']['visualization'], dataset_name+'_video', | |
f"{folder}.mp4") | |
dir_name = osp.abspath( | |
osp.dirname(video_output_path)) | |
os.makedirs(dir_name, exist_ok=True) | |
frame_rate = 15 | |
h, w = result_img.shape[:2] | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
video_writer = cv2.VideoWriter(video_output_path, fourcc, | |
frame_rate, (w, h)) | |
video_writer.write(result_img) | |
# calculate metrics | |
if with_metrics: | |
for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()): | |
result = calculate_metric(metric_data, opt_) | |
self.metric_results[folder][idx, | |
metric_idx] += result | |
if save_video: | |
cv2.destroyAllWindows() | |
video_writer.release() | |
# progress bar | |
if rank == 0: | |
for _ in range(world_size): | |
pbar.update(1) | |
pbar.set_description(f'Folder: {folder}') | |
if rank == 0: | |
pbar.close() | |
if with_metrics: | |
if self.opt['dist']: | |
# collect data among GPUs | |
for _, tensor in self.metric_results.items(): | |
dist.reduce(tensor, 0) | |
dist.barrier() | |
if rank == 0: | |
self._log_validation_metric_values( | |
current_iter, dataset_name, tb_logger) | |
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
logger = get_root_logger() | |
logger.warning( | |
'nondist_validation is not implemented. Run dist_validation.') | |
self.dist_validation(dataloader, current_iter, tb_logger, save_img) | |
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): | |
# ----------------- calculate the average values for each folder, and for each metric ----------------- # | |
# average all frames for each sub-folder | |
# metric_results_avg is a dict:{ | |
# 'folder1': tensor (len(metrics)), | |
# 'folder2': tensor (len(metrics)) | |
# } | |
metric_results_avg = { | |
folder: torch.mean(tensor, dim=0).cpu() | |
for (folder, tensor) in self.metric_results.items() | |
} | |
# total_avg_results is a dict: { | |
# 'metric1': float, | |
# 'metric2': float | |
# } | |
total_avg_results = { | |
metric: 0 for metric in self.opt['val']['metrics'].keys()} | |
for folder, tensor in metric_results_avg.items(): | |
for idx, metric in enumerate(total_avg_results.keys()): | |
total_avg_results[metric] += metric_results_avg[folder][idx].item() | |
# average among folders | |
for metric in total_avg_results.keys(): | |
total_avg_results[metric] /= len(metric_results_avg) | |
# update the best metric result | |
self._update_best_metric_result( | |
dataset_name, metric, total_avg_results[metric], current_iter) | |
# ------------------------------------------ log the metric ------------------------------------------ # | |
log_str = f'Validation {dataset_name}\n' | |
for metric_idx, (metric, value) in enumerate(total_avg_results.items()): | |
log_str += f'\t # {metric}: {value:.4f}\n' | |
for folder, tensor in metric_results_avg.items(): | |
log_str += f'\t # {folder}: {tensor[metric_idx].item():.4f}\n' | |
if hasattr(self, 'best_metric_results'): | |
log_str += (f'\n\t Best: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ ' | |
f'{self.best_metric_results[dataset_name][metric]["iter"]} iter') | |
log_str += '\n' | |
logger = get_root_logger() | |
logger.info(log_str) | |
if tb_logger: | |
for metric_idx, (metric, value) in enumerate(total_avg_results.items()): | |
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) | |
for folder, tensor in metric_results_avg.items(): | |
tb_logger.add_scalar( | |
f'metrics/{metric}/{folder}', tensor[metric_idx].item(), current_iter) | |
def test(self): | |
n = self.lq.size(1) | |
self.net_g.eval() | |
flip_seq = self.opt['val'].get('flip_seq', False) | |
self.center_frame_only = self.opt['val'].get('center_frame_only', False) | |
if flip_seq: | |
self.lq = torch.cat([self.lq, self.lq.flip(1)], dim=1) | |
with torch.no_grad(): | |
video_length = self.lq.shape[1] | |
fix_length = 20 | |
if video_length > fix_length: | |
output = [] | |
for start_idx in range(0, video_length, fix_length): | |
end_idx = min(start_idx + fix_length, video_length) | |
if end_idx - start_idx == 1: | |
output.append(self.net_g( | |
self.lq[:, [start_idx, start_idx], ...])[:, 0:1, ...]) | |
else: | |
output.append(self.net_g( | |
self.lq[:, start_idx:end_idx, ...])) | |
self.output = torch.cat(output, dim=1) | |
assert self.output.shape[1] == video_length, "Differer number of frames" | |
else: | |
self.output = self.net_g(self.lq) | |
if flip_seq: | |
output_1 = self.output[:, :n, :, :, :] | |
output_2 = self.output[:, n:, :, :, :].flip(1) | |
self.output = 0.5 * (output_1 + output_2) | |
if hasattr(self, 'center_frame_only') and self.center_frame_only: | |
self.output = self.output[:, n // 2, :, :, :] | |
self.net_g.train() | |