Spaces:
Running
on
Zero
Running
on
Zero
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
import pdb | |
from einops import rearrange | |
from basicsr.utils import get_root_logger | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from basicsr.archs import build_network | |
from basicsr.losses import build_loss | |
from basicsr.archs.arch_util import flow_warp, resize_flow | |
from .video_recurrent_model import VideoRecurrentModel | |
class KEEPGANModel(VideoRecurrentModel): | |
"""KEEPGAN Model. | |
""" | |
def init_training_settings(self): | |
self.net_g.train() | |
train_opt = self.opt['train'] | |
logger = get_root_logger() | |
# # load pretrained VQGAN models | |
# load_path = self.opt['path'].get('pretrain_network_vqgan', None) | |
# if load_path is not None: | |
# param_key = self.opt['path'].get('param_key_vqgan', 'params') | |
# self.load_network(self.net_g, load_path, False, param_key) | |
self.ema_decay = train_opt.get('ema_decay', 0) | |
if self.ema_decay > 0: | |
logger.info( | |
f'Use Exponential Moving Average with decay: {self.ema_decay}') | |
# define network net_g with Exponential Moving Average (EMA) | |
# net_g_ema is used only for testing on one GPU and saving | |
# There is no need to wrap with DistributedDataParallel | |
self.net_g_ema = build_network( | |
self.opt['network_g']).to(self.device) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
self.load_network(self.net_g_ema, load_path, self.opt['path'].get( | |
'strict_load_g', True), 'params_ema') | |
else: | |
self.model_ema(0) # copy net_g weight | |
self.net_g_ema.eval() | |
# define network net_d | |
self.net_d = build_network(self.opt['network_d']) | |
self.net_d = self.model_to_device(self.net_d) | |
self.print_network(self.net_d) | |
# load pretrained weights | |
load_path = self.opt['path'].get('pretrain_network_d', None) | |
if load_path is not None: | |
self.load_network(self.net_d, load_path, | |
self.opt['path'].get('strict_load_d', True)) | |
self.net_d.train() | |
# define losses. | |
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', False) | |
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0) | |
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', False) | |
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5) | |
if self.cross_entropy_loss: | |
self.generate_idx_gt = True | |
assert self.opt.get( | |
'network_vqgan', None) is not None, f'Shoule have network_vqgan config or pre-calculated latent code.' | |
self.hq_vqgan_fix = build_network( | |
self.opt['network_vqgan']).to(self.device) | |
self.hq_vqgan_fix.eval() | |
for param in self.hq_vqgan_fix.parameters(): | |
param.requires_grad = False | |
# load_path = self.opt['path'].get('pretrain_network_vqgan', None) | |
# assert load_path != None, "Should load pre-trained VQGAN" | |
# self.load_network(self.hq_vqgan_fix, load_path, strict=False) | |
else: | |
self.generate_idx_gt = False | |
logger.info(f'Need to generate latent GT code: {self.generate_idx_gt}') | |
if train_opt.get('pixel_opt'): | |
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) | |
else: | |
self.cri_pix = None | |
if train_opt.get('perceptual_opt'): | |
self.perceptual_type = train_opt['perceptual_opt']['type'] | |
self.cri_perceptual = build_loss( | |
train_opt['perceptual_opt']).to(self.device) | |
else: | |
self.cri_perceptual = None | |
if train_opt.get('temporal_opt'): | |
self.temporal_type = train_opt.get('temporal_warp_type', 'GT') | |
self.cri_temporal = build_loss( | |
train_opt['temporal_opt']).to(self.device) | |
else: | |
self.cri_temporal = None | |
if train_opt.get('gan_opt'): | |
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) | |
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0) | |
self.net_d_iters = train_opt.get('net_d_iters', 1) | |
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0) | |
# set up optimizers and schedulers | |
self.setup_optimizers() | |
self.setup_schedulers() | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
logger = get_root_logger() | |
optim_names, freezed_names = [], [] | |
# optimizer g | |
optim_params_g = [] | |
for k, v in self.net_g.named_parameters(): | |
if v.requires_grad: | |
optim_params_g.append(v) | |
optim_names.append(k) | |
else: | |
freezed_names.append(k) | |
logger.warning(f'--------------- Optimizing Params ---------------.') | |
for k in optim_names: | |
logger.warning(f'Params {k} will be optimized.') | |
logger.warning(f'--------------- Freezing Params ---------------.') | |
for k in freezed_names: | |
logger.warning(f'Params {k} will be freezed.') | |
optim_type = train_opt['optim_g'].pop('type') | |
self.optimizer_g = self.get_optimizer( | |
optim_type, optim_params_g, **train_opt['optim_g']) | |
self.optimizers.append(self.optimizer_g) | |
# optimizer d | |
optim_type = train_opt['optim_d'].pop('type') | |
self.optimizer_d = self.get_optimizer( | |
optim_type, self.net_d.parameters(), **train_opt['optim_d']) | |
self.optimizers.append(self.optimizer_d) | |
def optimize_parameters(self, current_iter): | |
# optimize net_g | |
for p in self.net_d.parameters(): | |
p.requires_grad = False | |
self.optimizer_g.zero_grad() | |
if self.generate_idx_gt: | |
with torch.no_grad(): | |
b, f, c, h, w = self.gt.shape | |
x = self.hq_vqgan_fix.encoder(self.gt.reshape(-1, c, h, w)) | |
_, _, quant_stats = self.hq_vqgan_fix.quantize(x) | |
min_encoding_indices = quant_stats['min_encoding_indices'] | |
self.idx_gt = min_encoding_indices.view(b*f, -1) | |
if self.hq_feat_loss or self.cross_entropy_loss: | |
self.output, logits, lq_feat, gen_feat_dict = self.net_g( | |
self.lq, detach_16=True, early_feat=True) | |
else: | |
self.output, gen_feat_dict = self.net_g( | |
self.lq, detach_16=True, early_feat=False) | |
if len(gen_feat_dict) == 0: | |
gen_feat_dict['HR'] = self.output | |
l_g_total = 0 | |
loss_dict = OrderedDict() | |
# hq_feat_loss | |
if self.hq_feat_loss: # codebook loss | |
code_h = lq_feat.shape[-1] | |
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat( | |
self.idx_gt, shape=[b*f, code_h, code_h, 256]) | |
l_feat_encoder = torch.mean( | |
(quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight | |
l_g_total += l_feat_encoder | |
loss_dict['l_feat_encoder'] = l_feat_encoder | |
# cross_entropy_loss | |
if self.cross_entropy_loss: | |
# b(hw)n -> bn(hw) | |
cross_entropy_loss = F.cross_entropy(logits.permute( | |
0, 2, 1), self.idx_gt) * self.entropy_loss_weight | |
l_g_total += cross_entropy_loss | |
loss_dict['l_cross_entropy'] = cross_entropy_loss | |
# Temporal consistency loss | |
if self.cri_temporal: | |
assert len( | |
gen_feat_dict) != 0, "Empty features for temporal regularization." | |
with torch.no_grad(): | |
if self.temporal_type == 'GT': | |
flows = self.net_g.module.get_flow(self.gt).detach() | |
flows = rearrange(flows, "b f c h w -> (b f) c h w") | |
elif self.temporal_type == 'HR': | |
flows = self.net_g.module.get_flow(self.output).detach() | |
flows = rearrange(flows, "b f c h w -> (b f) c h w") | |
elif self.temporal_type == 'Diff': | |
gt_flows = self.net_g.module.get_flow(self.gt).detach() | |
gt_flows = rearrange(gt_flows, "b f c h w -> (b f) c h w") | |
hr_flows = self.net_g.module.get_flow(self.output).detach() | |
hr_flows = rearrange(hr_flows, "b f c h w -> (b f) c h w") | |
else: | |
raise ValueError( | |
f'Unsupported temporal mode: {self.temporal_type}.') | |
l_temporal = 0 | |
for f_size, feat in gen_feat_dict.items(): | |
b, f, c, h, w = feat.shape | |
if self.temporal_type == 'GT' or self.temporal_type == 'HR': | |
flow = resize_flow(flows, 'shape', [h, w]) # B*(T-1) 2 H W | |
flow = rearrange(flow, "b c h w -> b h w c") | |
prev_feat = feat[:, :-1, ...].reshape(-1, c, h, w) | |
curr_feat = feat[:, 1:, ...].reshape(-1, c, h, w) | |
warp_feat = flow_warp(prev_feat, flow) | |
l_temporal += self.cri_temporal(curr_feat, warp_feat) | |
elif self.temporal_type == 'Diff': | |
gt_flow = resize_flow(gt_flows, 'shape', [ | |
h, w]) # B*(T-1) 2 H W | |
gt_flow = rearrange(gt_flow, "b c h w -> b h w c") | |
hr_flow = resize_flow(hr_flows, 'shape', [ | |
h, w]) # B*(T-1) 2 H W | |
hr_flow = rearrange(hr_flow, "b c h w -> b h w c") | |
prev_feat = feat[:, :-1, ...].reshape(-1, c, h, w) | |
curr_feat = feat[:, 1:, ...].reshape(-1, c, h, w) | |
gt_warp_feat = flow_warp(prev_feat, gt_flow) | |
hr_warp_feat = flow_warp(prev_feat, hr_flow) | |
l_temporal += self.cri_temporal(gt_warp_feat, hr_warp_feat) | |
l_g_total += l_temporal | |
loss_dict['l_temporal'] = l_temporal | |
# pixel loss | |
if self.cri_pix: | |
l_pix = self.cri_pix(self.output, self.gt) | |
l_g_total += l_pix | |
loss_dict['l_pix'] = l_pix | |
# perceptual loss | |
if self.cri_perceptual: | |
B, T, C, H, W = self.gt.shape | |
if self.perceptual_type == 'PerceptualLoss': | |
l_percep, l_style = self.cri_perceptual( | |
self.output.view(-1, C, H, W), self.gt.view(-1, C, H, W)) | |
if l_percep is not None: | |
l_g_total += l_percep | |
loss_dict['l_percep'] = l_percep | |
if l_style is not None: | |
l_g_total += l_style | |
loss_dict['l_style'] = l_style | |
elif self.perceptual_type == 'LPIPSLoss': | |
l_percep = self.cri_perceptual( | |
self.output.view(-1, C, H, W), self.gt.view(-1, C, H, W)) | |
l_g_total += l_percep | |
loss_dict['l_percep'] = l_percep | |
# gan loss | |
if current_iter > self.net_d_start_iter: | |
fake_g_pred = self.net_d(self.output) | |
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False) | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan'] = l_g_gan | |
l_g_total.backward() | |
self.optimizer_g.step() | |
if self.ema_decay > 0: | |
self.model_ema(decay=self.ema_decay) | |
# optimize net_d | |
if current_iter > self.net_d_start_iter: | |
for p in self.net_d.parameters(): | |
p.requires_grad = True | |
self.optimizer_d.zero_grad() | |
# real | |
real_d_pred = self.net_d(self.gt) | |
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True) | |
loss_dict['l_d_real'] = l_d_real | |
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) | |
l_d_real.backward() | |
# fake | |
fake_d_pred = self.net_d(self.output.detach()) | |
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True) | |
loss_dict['l_d_fake'] = l_d_fake | |
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) | |
l_d_fake.backward() | |
self.optimizer_d.step() | |
self.log_dict = self.reduce_loss_dict(loss_dict) | |
def save(self, epoch, current_iter): | |
if hasattr(self, 'net_g_ema'): | |
self.save_network([self.net_g, self.net_g_ema], 'net_g', | |
current_iter, param_key=['params', 'params_ema']) | |
else: | |
self.save_network(self.net_g, 'net_g', current_iter) | |
self.save_network(self.net_d, 'net_d', current_iter) | |
self.save_training_state(epoch, current_iter) | |