Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pickle | |
import pandas as pd | |
from catboost import CatBoostClassifier | |
# Load the trained model and unique values from the pickle file | |
with open('model_and_key_components.pkl', 'rb') as file: | |
saved_components = pickle.load(file) | |
model = saved_components['model'] | |
unique_values = saved_components['unique_values'] | |
# Define the Streamlit app | |
def main(): | |
st.title("Employee Attrition Prediction App π΅οΈββοΈ") | |
st.sidebar.title("Model Settings βοΈ") | |
# Sidebar inputs | |
with st.sidebar.expander("View Unique Values π"): | |
st.write("Unique values for each feature:") | |
for column, values in unique_values.items(): | |
st.write(f"- {column}: {values}") | |
# Main content | |
st.write("Welcome to the Employee Attrition Prediction App! π") | |
st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.") | |
st.write("Please provide the following information to make a prediction:") | |
# Define layout with three columns | |
col1, col2, col3 = st.columns(3) | |
# Column 1 | |
with col1: | |
age = st.number_input("Age", min_value=18, max_value=70) | |
monthly_income = st.number_input("Monthly Income") | |
num_companies_worked = st.number_input("Number of Companies Worked") | |
percent_salary_hike = st.number_input("Percent Salary Hike", min_value=0, max_value=25) | |
training_times_last_year = st.number_input("Training Times Last Year", min_value=0, max_value=6) | |
# Column 2 | |
with col2: | |
department = st.selectbox("Department", ['Sales', 'Research & Development', 'Human Resources']) | |
environment_satisfaction = st.selectbox("Environment Satisfaction", [1, 2, 3, 4]) | |
job_role = st.selectbox("Job Role", ['Sales Executive', 'Research Scientist', 'Laboratory Technician', | |
'Manufacturing Director', 'Healthcare Representative', 'Manager', | |
'Sales Representative', 'Research Director', 'Human Resources']) | |
job_satisfaction = st.selectbox("Job Satisfaction", [1, 2, 3, 4]) | |
work_life_balance = st.selectbox("Work Life Balance", [1, 2, 3, 4]) | |
# Column 3 | |
with col3: | |
over_time = st.checkbox("Over Time") | |
relationship_satisfaction = st.selectbox("Relationship Satisfaction", [1, 2, 3, 4]) | |
years_since_last_promotion = st.number_input("Years Since Last Promotion") | |
years_with_curr_manager = st.number_input("Years With Current Manager") | |
# Predict button | |
if st.button("Predict π"): | |
# Create a DataFrame to hold the user input data | |
input_data = pd.DataFrame({ | |
'Age': [age], | |
'Department': [department], | |
'EnvironmentSatisfaction': [environment_satisfaction], | |
'JobRole': [job_role], | |
'JobSatisfaction': [job_satisfaction], | |
'MonthlyIncome': [monthly_income], | |
'NumCompaniesWorked': [num_companies_worked], | |
'OverTime': [over_time], | |
'PercentSalaryHike': [percent_salary_hike], | |
'RelationshipSatisfaction': [relationship_satisfaction], | |
'TrainingTimesLastYear': [training_times_last_year], | |
'WorkLifeBalance': [work_life_balance], | |
'YearsSinceLastPromotion': [years_since_last_promotion], | |
'YearsWithCurrManager': [years_with_curr_manager] | |
}) | |
# Reorder columns to match the expected order | |
input_data = input_data[['Age', 'Department', 'EnvironmentSatisfaction', 'JobRole', 'JobSatisfaction', | |
'MonthlyIncome', 'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike', | |
'RelationshipSatisfaction', 'TrainingTimesLastYear', 'WorkLifeBalance', | |
'YearsSinceLastPromotion', 'YearsWithCurrManager']] | |
# Make predictions | |
prediction = model.predict(input_data) | |
probability = model.predict_proba(input_data)[:, 1] | |
# Display prediction probability | |
if prediction[0] == 1: | |
st.subheader("Prediction Probability π") | |
st.write(f"The probability of the employee leaving is: {probability[0]*100:.2f}%") | |
# Display characteristic-based recommendations | |
st.subheader("Recommendations for Retaining The Employee π‘:") | |
if job_satisfaction == 1 or environment_satisfaction == 1: | |
st.markdown("- **Job and Environment Satisfaction**: Enhance job and environment satisfaction through initiatives such as recognition programs and improving workplace conditions.") | |
if years_since_last_promotion > 5: | |
st.markdown("- Implement a transparent promotion policy and provide opportunities for career advancement.") | |
if years_with_curr_manager > 5: | |
st.markdown("- Offer opportunities for a change in reporting structure to prevent stagnation and promote growth.") | |
if percent_salary_hike < 5: | |
st.markdown("- Consider adjusting salary and benefits packages to remain competitive and reward employee loyalty.") | |
if training_times_last_year < 2: | |
st.markdown("- Invest in employee development through training programs and continuous learning opportunities.") | |
if over_time: | |
st.markdown("- Evaluate workload distribution and consider implementing measures to prevent overwork, such as workload balancing and flexible scheduling.") | |
if relationship_satisfaction == 1: | |
st.markdown("- Foster positive relationships and a supportive work environment through team-building activities and open communication channels.") | |
if monthly_income < 5000: | |
st.markdown("- Review compensation structures and adjust salaries to align with industry standards and employee expectations.") | |
if num_companies_worked > 5: | |
st.markdown("- Identify reasons for high turnover and address issues related to job stability, career progression, and organizational culture.") | |
if work_life_balance == 1: | |
st.markdown("- Promote work-life balance initiatives, such as flexible work arrangements and wellness programs, to support employee well-being.") | |
# General recommendation for all negative predictions | |
st.markdown("- Conduct exit interviews to gather feedback and identify areas for improvement in retention strategies.") | |
if __name__ == "__main__": | |
main() |