rasmodev commited on
Commit
f990557
β€’
1 Parent(s): 4e1803a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -12,17 +12,17 @@ unique_values = saved_components['unique_values']
12
 
13
  # Define the Streamlit app
14
  def main():
15
- st.title("Employee Attrition Prediction App")
16
- st.sidebar.title("Model Settings")
17
 
18
  # Sidebar inputs
19
- with st.sidebar.expander("View Unique Values"):
20
  st.write("Unique values for each feature:")
21
  for column, values in unique_values.items():
22
  st.write(f"- {column}: {values}")
23
 
24
  # Main content
25
- st.write("Welcome to the Employee Attrition Prediction App!")
26
  st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
27
  st.write("Please provide the following information to make a prediction:")
28
 
@@ -55,7 +55,7 @@ def main():
55
  years_with_curr_manager = st.number_input("Years With Current Manager")
56
 
57
  # Predict button
58
- if st.button("Predict"):
59
 
60
  # Create a DataFrame to hold the user input data
61
  input_data = pd.DataFrame({
@@ -84,16 +84,16 @@ def main():
84
  # Make predictions
85
  prediction = model.predict(input_data)
86
  probability = model.predict_proba(input_data)[:, 1]
87
-
88
  # Display prediction probability
89
  if prediction[0] == 1:
90
- st.subheader("Prediction Probability")
91
  st.write(f"The probability of the employee leaving is: {probability[0]*100:.2f}%")
92
 
93
  # Display characteristic-based recommendations
94
- st.subheader("Recommendations for Retaining The Employee:")
95
  if job_satisfaction == 1 or environment_satisfaction == 1:
96
- st.markdown("- Enhance job and environment satisfaction through initiatives such as recognition programs and improving workplace conditions.")
97
  if years_since_last_promotion > 5:
98
  st.markdown("- Implement a transparent promotion policy and provide opportunities for career advancement.")
99
  if years_with_curr_manager > 5:
 
12
 
13
  # Define the Streamlit app
14
  def main():
15
+ st.title("Employee Attrition Prediction App πŸ•΅οΈβ€β™‚οΈ")
16
+ st.sidebar.title("Model Settings βš™οΈ")
17
 
18
  # Sidebar inputs
19
+ with st.sidebar.expander("View Unique Values πŸ”"):
20
  st.write("Unique values for each feature:")
21
  for column, values in unique_values.items():
22
  st.write(f"- {column}: {values}")
23
 
24
  # Main content
25
+ st.write("Welcome to the Employee Attrition Prediction App! πŸš€")
26
  st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
27
  st.write("Please provide the following information to make a prediction:")
28
 
 
55
  years_with_curr_manager = st.number_input("Years With Current Manager")
56
 
57
  # Predict button
58
+ if st.button("Predict πŸ“Š"):
59
 
60
  # Create a DataFrame to hold the user input data
61
  input_data = pd.DataFrame({
 
84
  # Make predictions
85
  prediction = model.predict(input_data)
86
  probability = model.predict_proba(input_data)[:, 1]
87
+
88
  # Display prediction probability
89
  if prediction[0] == 1:
90
+ st.subheader("Prediction Probability πŸ“ˆ")
91
  st.write(f"The probability of the employee leaving is: {probability[0]*100:.2f}%")
92
 
93
  # Display characteristic-based recommendations
94
+ st.subheader("Recommendations for Retaining The Employee πŸ’‘:")
95
  if job_satisfaction == 1 or environment_satisfaction == 1:
96
+ st.markdown("- **Job and Environment Satisfaction**: Enhance job and environment satisfaction through initiatives such as recognition programs and improving workplace conditions.")
97
  if years_since_last_promotion > 5:
98
  st.markdown("- Implement a transparent promotion policy and provide opportunities for career advancement.")
99
  if years_with_curr_manager > 5: