Spaces:
Runtime error
Runtime error
import glob | |
import inspect | |
import os | |
import sys | |
import traceback | |
import torch | |
from torch.nn.init import normal_, xavier_uniform_, zeros_, xavier_normal_, kaiming_uniform_, kaiming_normal_ | |
try: | |
from modules.hashes import sha256 | |
except (ImportError, ModuleNotFoundError): | |
print("modules.hashes is not found, will use backup module from extension!") | |
from .hashes_backup import sha256 | |
import modules.hypernetworks.hypernetwork | |
from modules import devices, shared, sd_models | |
from .hnutil import parse_dropout_structure, find_self | |
from .shared import version_flag | |
def init_weight(layer, weight_init="Normal", normal_std=0.01, activation_func="relu"): | |
w, b = layer.weight.data, layer.bias.data | |
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm: | |
normal_(w, mean=0.0, std=normal_std) | |
normal_(b, mean=0.0, std=0) | |
elif weight_init == 'XavierUniform': | |
xavier_uniform_(w) | |
zeros_(b) | |
elif weight_init == 'XavierNormal': | |
xavier_normal_(w) | |
zeros_(b) | |
elif weight_init == 'KaimingUniform': | |
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') | |
zeros_(b) | |
elif weight_init == 'KaimingNormal': | |
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') | |
zeros_(b) | |
else: | |
raise KeyError(f"Key {weight_init} is not defined as initialization!") | |
class ResBlock(torch.nn.Module): | |
"""Residual Block""" | |
def __init__(self, n_inputs, n_outputs, activation_func, weight_init, add_layer_norm, dropout_p, normal_std, device=None, state_dict=None, **kwargs): | |
super().__init__() | |
self.n_outputs = n_outputs | |
self.upsample_layer = None | |
self.upsample = kwargs.get("upsample_model", None) | |
if self.upsample == "Linear": | |
self.upsample_layer = torch.nn.Linear(n_inputs, n_outputs, bias=False) | |
linears = [torch.nn.Linear(n_inputs, n_outputs)] | |
init_weight(linears[0], weight_init, normal_std, activation_func) | |
if add_layer_norm: | |
linears.append(torch.nn.LayerNorm(n_outputs)) | |
init_weight(linears[1], weight_init, normal_std, activation_func) | |
if dropout_p > 0: | |
linears.append(torch.nn.Dropout(p=dropout_p)) | |
if activation_func == "linear" or activation_func is None: | |
pass | |
elif activation_func in HypernetworkModule.activation_dict: | |
linears.append(HypernetworkModule.activation_dict[activation_func]()) | |
else: | |
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') | |
self.linear = torch.nn.Sequential(*linears) | |
if state_dict is not None: | |
self.load_state_dict(state_dict) | |
if device is not None: | |
self.to(device) | |
def trainables(self, train=False): | |
layer_structure = [] | |
for layer in self.linear: | |
if train: | |
layer.train() | |
else: | |
layer.eval() | |
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: | |
layer_structure += [layer.weight, layer.bias] | |
return layer_structure | |
def forward(self, x, **kwargs): | |
if self.upsample_layer is None: | |
interpolated = torch.nn.functional.interpolate(x, size=self.n_outputs, mode="nearest-exact") | |
else: | |
interpolated = self.upsample_layer(x) | |
return interpolated + self.linear(x) | |
class HypernetworkModule(torch.nn.Module): | |
multiplier = 1.0 | |
activation_dict = { | |
"linear": torch.nn.Identity, | |
"relu": torch.nn.ReLU, | |
"leakyrelu": torch.nn.LeakyReLU, | |
"elu": torch.nn.ELU, | |
"swish": torch.nn.Hardswish, | |
"tanh": torch.nn.Tanh, | |
"sigmoid": torch.nn.Sigmoid, | |
} | |
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'}) | |
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', | |
add_layer_norm=False, activate_output=False, dropout_structure=None, device=None, generation_seed=None, normal_std=0.01, **kwargs): | |
super().__init__() | |
self.skip_connection = skip_connection = kwargs.get('skip_connection', False) | |
upsample_linear = kwargs.get('upsample_linear', None) | |
assert layer_structure is not None, "layer_structure must not be None" | |
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" | |
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" | |
# instead of throwing error, maybe try warning. first value is always not used. | |
if not (skip_connection or dropout_structure is None or dropout_structure[0] == dropout_structure[-1] == 0): | |
print("Dropout sequence does not starts or ends with zero.") | |
# assert skip_connection or dropout_structure is None or dropout_structure[0] == dropout_structure[-1] == 0, "Dropout Sequence should start and end with probability 0!" | |
assert dropout_structure is None or len(dropout_structure) == len(layer_structure), "Dropout Sequence should match length with layer structure!" | |
linears = [] | |
if skip_connection: | |
if generation_seed is not None: | |
torch.manual_seed(generation_seed) | |
for i in range(len(layer_structure) - 1): | |
if skip_connection: | |
n_inputs, n_outputs = int(dim * layer_structure[i]), int(dim * layer_structure[i+1]) | |
dropout_p = dropout_structure[i+1] | |
if activation_func is None: | |
activation_func = "linear" | |
linears.append(ResBlock(n_inputs, n_outputs, activation_func, weight_init, add_layer_norm, dropout_p, normal_std, device, upsample_model=upsample_linear)) | |
continue | |
# Add a fully-connected layer | |
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) | |
# Add an activation func except last layer | |
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output): | |
pass | |
elif activation_func in self.activation_dict: | |
linears.append(self.activation_dict[activation_func]()) | |
else: | |
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') | |
# Add layer normalization | |
if add_layer_norm: | |
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) | |
# Everything should be now parsed into dropout structure, and applied here. | |
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0. | |
if dropout_structure is not None and dropout_structure[i+1] > 0: | |
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!" | |
linears.append(torch.nn.Dropout(p=dropout_structure[i+1])) | |
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0]. | |
self.linear = torch.nn.Sequential(*linears) | |
if state_dict is not None: | |
self.fix_old_state_dict(state_dict) | |
self.load_state_dict(state_dict) | |
elif not skip_connection: | |
if generation_seed is not None: | |
torch.manual_seed(generation_seed) | |
for layer in self.linear: | |
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: | |
w, b = layer.weight.data, layer.bias.data | |
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm: | |
normal_(w, mean=0.0, std=normal_std) | |
normal_(b, mean=0.0, std=0) | |
elif weight_init == 'XavierUniform': | |
xavier_uniform_(w) | |
zeros_(b) | |
elif weight_init == 'XavierNormal': | |
xavier_normal_(w) | |
zeros_(b) | |
elif weight_init == 'KaimingUniform': | |
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') | |
zeros_(b) | |
elif weight_init == 'KaimingNormal': | |
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') | |
zeros_(b) | |
else: | |
raise KeyError(f"Key {weight_init} is not defined as initialization!") | |
if device is None: | |
self.to(devices.device) | |
else: | |
self.to(device) | |
def fix_old_state_dict(self, state_dict): | |
changes = { | |
'linear1.bias': 'linear.0.bias', | |
'linear1.weight': 'linear.0.weight', | |
'linear2.bias': 'linear.1.bias', | |
'linear2.weight': 'linear.1.weight', | |
} | |
for fr, to in changes.items(): | |
x = state_dict.get(fr, None) | |
if x is None: | |
continue | |
del state_dict[fr] | |
state_dict[to] = x | |
def forward(self, x, multiplier=None): | |
if self.skip_connection: | |
if self.training: | |
return self.linear(x) | |
else: | |
resnet_result = self.linear(x) | |
residual = resnet_result - x | |
if multiplier is None or not isinstance(multiplier, (int, float)): | |
multiplier = self.multiplier if not version_flag else HypernetworkModule.multiplier | |
return x + multiplier * residual # interpolate | |
if multiplier is None or not isinstance(multiplier, (int, float)): | |
return x + self.linear(x) * ((self.multiplier if not version_flag else HypernetworkModule.multiplier) if not self.training else 1) | |
return x + self.linear(x) * multiplier | |
def trainables(self, train=False): | |
layer_structure = [] | |
self.train(train) | |
for layer in self.linear: | |
if train: | |
layer.train() | |
else: | |
layer.eval() | |
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: | |
layer_structure += [layer.weight, layer.bias] | |
elif type(layer) == ResBlock: | |
layer_structure += layer.trainables(train) | |
return layer_structure | |
def set_train(self,mode=True): | |
self.train(mode) | |
for layer in self.linear: | |
if mode: | |
layer.train(mode) | |
else: | |
layer.eval() | |
class Hypernetwork: | |
filename = None | |
name = None | |
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs): | |
self.filename = None | |
self.name = name | |
self.layers = {} | |
self.step = 0 | |
self.sd_checkpoint = None | |
self.sd_checkpoint_name = None | |
self.layer_structure = layer_structure | |
self.activation_func = activation_func | |
self.weight_init = weight_init | |
self.add_layer_norm = add_layer_norm | |
self.use_dropout = use_dropout | |
self.activate_output = activate_output | |
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True | |
self.optimizer_name = None | |
self.optimizer_state_dict = None | |
self.dropout_structure = kwargs['dropout_structure'] if 'dropout_structure' in kwargs and use_dropout else None | |
self.optional_info = kwargs.get('optional_info', None) | |
self.skip_connection = kwargs.get('skip_connection', False) | |
self.upsample_linear = kwargs.get('upsample_linear', None) | |
self.training = False | |
generation_seed = kwargs.get('generation_seed', None) | |
normal_std = kwargs.get('normal_std', 0.01) | |
if self.dropout_structure is None: | |
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) | |
for size in enable_sizes or []: | |
self.layers[size] = ( | |
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure, generation_seed=generation_seed, normal_std=normal_std, skip_connection=self.skip_connection, | |
upsample_linear=self.upsample_linear), | |
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure, generation_seed=generation_seed, normal_std=normal_std, skip_connection=self.skip_connection, | |
upsample_linear=self.upsample_linear), | |
) | |
self.eval() | |
def weights(self, train=False): | |
self.training = train | |
res = [] | |
for k, layers in self.layers.items(): | |
for layer in layers: | |
res += layer.trainables(train) | |
return res | |
def eval(self): | |
self.training = False | |
for k, layers in self.layers.items(): | |
for layer in layers: | |
layer.eval() | |
layer.set_train(False) | |
def train(self, mode=True): | |
self.training = mode | |
for k, layers in self.layers.items(): | |
for layer in layers: | |
layer.set_train(mode) | |
def detach_grad(self): | |
for k, layers in self.layers.items(): | |
for layer in layers: | |
layer.requires_grad_(False) | |
def shorthash(self): | |
sha256v = sha256(self.filename, f'hypernet/{self.name}') | |
return sha256v[0:10] | |
def extra_name(self): | |
if version_flag: | |
return "" | |
found = find_self(self) | |
if found is not None: | |
return f" <hypernet:{found}:1.0>" | |
return f" <hypernet:{self.name}:1.0>" | |
def save(self, filename): | |
state_dict = {} | |
optimizer_saved_dict = {} | |
for k, v in self.layers.items(): | |
state_dict[k] = (v[0].state_dict(), v[1].state_dict()) | |
state_dict['step'] = self.step | |
state_dict['name'] = self.name | |
state_dict['layer_structure'] = self.layer_structure | |
state_dict['activation_func'] = self.activation_func | |
state_dict['is_layer_norm'] = self.add_layer_norm | |
state_dict['weight_initialization'] = self.weight_init | |
state_dict['sd_checkpoint'] = self.sd_checkpoint | |
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name | |
state_dict['activate_output'] = self.activate_output | |
state_dict['use_dropout'] = self.use_dropout | |
state_dict['dropout_structure'] = self.dropout_structure | |
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout | |
state_dict['optional_info'] = self.optional_info if self.optional_info else None | |
state_dict['skip_connection'] = self.skip_connection | |
state_dict['upsample_linear'] = self.upsample_linear | |
if self.optimizer_name is not None: | |
optimizer_saved_dict['optimizer_name'] = self.optimizer_name | |
torch.save(state_dict, filename) | |
if shared.opts.save_optimizer_state and self.optimizer_state_dict: | |
optimizer_saved_dict['hash'] = self.shorthash() # this is necessary | |
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict | |
torch.save(optimizer_saved_dict, filename + '.optim') | |
def load(self, filename): | |
self.filename = filename | |
if self.name is None: | |
self.name = os.path.splitext(os.path.basename(filename))[0] | |
state_dict = torch.load(filename, map_location='cpu') | |
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) | |
print(self.layer_structure) | |
optional_info = state_dict.get('optional_info', None) | |
if optional_info is not None: | |
self.optional_info = optional_info | |
self.activation_func = state_dict.get('activation_func', None) | |
self.weight_init = state_dict.get('weight_initialization', 'Normal') | |
self.add_layer_norm = state_dict.get('is_layer_norm', False) | |
self.dropout_structure = state_dict.get('dropout_structure', None) | |
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) | |
self.activate_output = state_dict.get('activate_output', True) | |
self.last_layer_dropout = state_dict.get('last_layer_dropout', False) # Silent fix for HNs before 4918eb6 | |
self.skip_connection = state_dict.get('skip_connection', False) | |
self.upsample_linear = state_dict.get('upsample_linear', False) | |
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. | |
if self.dropout_structure is None: | |
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) | |
if hasattr(shared.opts, 'print_hypernet_extra') and shared.opts.print_hypernet_extra: | |
if optional_info is not None: | |
print(f"INFO:\n {optional_info}\n") | |
print(f"Activation function is {self.activation_func}") | |
print(f"Weight initialization is {self.weight_init}") | |
print(f"Layer norm is set to {self.add_layer_norm}") | |
print(f"Dropout usage is set to {self.use_dropout}") | |
print(f"Activate last layer is set to {self.activate_output}") | |
print(f"Dropout structure is set to {self.dropout_structure}") | |
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {} | |
self.optimizer_name = state_dict.get('optimizer_name', 'AdamW') | |
if optimizer_saved_dict.get('hash', None) == self.shorthash() or optimizer_saved_dict.get('hash', None) == sd_models.model_hash(filename): | |
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) | |
else: | |
self.optimizer_state_dict = None | |
if self.optimizer_state_dict: | |
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW') | |
print("Loaded existing optimizer from checkpoint") | |
print(f"Optimizer name is {self.optimizer_name}") | |
else: | |
print("No saved optimizer exists in checkpoint") | |
for size, sd in state_dict.items(): | |
if type(size) == int: | |
self.layers[size] = ( | |
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, self.dropout_structure, skip_connection=self.skip_connection, upsample_linear=self.upsample_linear), | |
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, | |
self.add_layer_norm, self.activate_output, self.dropout_structure, skip_connection=self.skip_connection, upsample_linear=self.upsample_linear), | |
) | |
self.name = state_dict.get('name', self.name) | |
self.step = state_dict.get('step', 0) | |
self.sd_checkpoint = state_dict.get('sd_checkpoint', None) | |
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) | |
self.eval() | |
def to(self, device): | |
for k, layers in self.layers.items(): | |
for layer in layers: | |
layer.to(device) | |
return self | |
def set_multiplier(self, multiplier): | |
for k, layers in self.layers.items(): | |
for layer in layers: | |
layer.multiplier = multiplier | |
return self | |
def __call__(self, context, *args, **kwargs): | |
return self.forward(context, *args, **kwargs) | |
def forward(self, context, context_v=None, layer=None): | |
context_layers = self.layers.get(context.shape[2], None) | |
if context_v is None: | |
context_v = context | |
if context_layers is None: | |
return context, context_v | |
if layer is not None and hasattr(layer, 'hyper_k') and hasattr(layer, 'hyper_v'): | |
layer.hyper_k = context_layers[0] | |
layer.hyper_v = context_layers[1] | |
transform_k, transform_v = context_layers[0](context), context_layers[1](context_v) | |
return transform_k, transform_v | |
def list_hypernetworks(path): | |
res = {} | |
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)): | |
name = os.path.splitext(os.path.basename(filename))[0] | |
idx = 0 | |
while name in res: | |
idx += 1 | |
name = name + f"({idx})" | |
# Prevent a hypothetical "None.pt" from being listed. | |
if name != "None": | |
res[name] = filename | |
for filename in glob.iglob(os.path.join(path, '**/*.hns'), recursive=True): | |
name = os.path.splitext(os.path.basename(filename))[0] | |
if name != "None": | |
res[name] = filename | |
return res | |
def find_closest_first(keyset, target): | |
for keys in keyset: | |
if target == keys.rsplit('(', 1)[0]: | |
return keys | |
return None | |
def load_hypernetwork(filename): | |
hypernetwork = None | |
path = shared.hypernetworks.get(filename, None) | |
if path is None: | |
filename = find_closest_first(shared.hypernetworks.keys(), filename) | |
path = shared.hypernetworks.get(filename, None) | |
print(path) | |
# Prevent any file named "None.pt" from being loaded. | |
if path is not None and filename != "None": | |
print(f"Loading hypernetwork {filename}") | |
if path.endswith(".pt"): | |
try: | |
hypernetwork = Hypernetwork() | |
hypernetwork.load(path) | |
if hasattr(shared, 'loaded_hypernetwork'): | |
shared.loaded_hypernetwork = hypernetwork | |
else: | |
return hypernetwork | |
except Exception: | |
print(f"Error loading hypernetwork {path}", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
elif path.endswith(".hns"): | |
# Load Hypernetwork processing | |
try: | |
from .hypernetworks import load as load_hns | |
if hasattr(shared, 'loaded_hypernetwork'): | |
shared.loaded_hypernetwork = load_hns(path) | |
else: | |
hypernetwork = load_hns(path) | |
print(f"Loaded Hypernetwork Structure {path}") | |
return hypernetwork | |
except Exception: | |
print(f"Error loading hypernetwork processing file {path}", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
else: | |
print(f"Tried to load unknown file extension: {filename}") | |
else: | |
if hasattr(shared, 'loaded_hypernetwork'): | |
if shared.loaded_hypernetwork is not None: | |
print(f"Unloading hypernetwork") | |
shared.loaded_hypernetwork = None | |
return hypernetwork | |
def apply_hypernetwork(hypernetwork, context, layer=None): | |
if hypernetwork is None: | |
return context, context | |
if isinstance(hypernetwork, Hypernetwork): | |
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) | |
if hypernetwork_layers is None: | |
return context, context | |
if layer is not None: | |
layer.hyper_k = hypernetwork_layers[0] | |
layer.hyper_v = hypernetwork_layers[1] | |
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context))) | |
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context))) | |
return context_k, context_v | |
context_k, context_v = hypernetwork(context, layer=layer) | |
return context_k, context_v | |
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): | |
if hypernetwork is None: | |
return context_k, context_v | |
if isinstance(hypernetwork, Hypernetwork): | |
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) | |
if hypernetwork_layers is None: | |
return context_k, context_v | |
if layer is not None: | |
layer.hyper_k = hypernetwork_layers[0] | |
layer.hyper_v = hypernetwork_layers[1] | |
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k))) | |
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v))) | |
return context_k, context_v | |
context_k, context_v = hypernetwork(context_k, context_v, layer=layer) | |
return context_k, context_v | |
def apply_strength(value=None): | |
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength | |
def apply_hypernetwork_strength(p, x, xs): | |
apply_strength(x) | |
modules.hypernetworks.hypernetwork.list_hypernetworks = list_hypernetworks | |
modules.hypernetworks.hypernetwork.load_hypernetwork = load_hypernetwork | |
if hasattr(modules.hypernetworks.hypernetwork, 'apply_hypernetwork'): | |
modules.hypernetworks.hypernetwork.apply_hypernetwork = apply_hypernetwork | |
else: | |
modules.hypernetworks.hypernetwork.apply_single_hypernetwork = apply_single_hypernetwork | |
if hasattr(modules.hypernetworks.hypernetwork, 'apply_strength'): | |
modules.hypernetworks.hypernetwork.apply_strength = apply_strength | |
modules.hypernetworks.hypernetwork.Hypernetwork = Hypernetwork | |
modules.hypernetworks.hypernetwork.HypernetworkModule = HypernetworkModule | |
try: | |
import scripts.xy_grid | |
if hasattr(scripts.xy_grid, 'apply_hypernetwork_strength'): | |
scripts.xy_grid.apply_hypernetwork_strength = apply_hypernetwork_strength | |
except (ModuleNotFoundError, ImportError): | |
pass | |