Spaces:
Runtime error
Runtime error
import gc | |
import html | |
import json | |
import os | |
import random | |
from modules import shared, sd_hijack, devices | |
from modules.call_queue import wrap_gradio_call | |
from modules.paths import script_path | |
from modules.ui import create_refresh_button, gr_show | |
from webui import wrap_gradio_gpu_call | |
from .textual_inversion import train_embedding as train_embedding_external | |
from .hypernetwork import train_hypernetwork as train_hypernetwork_external, train_hypernetwork_tuning | |
import gradio as gr | |
def train_hypernetwork_ui(*args): | |
initial_hypernetwork = None | |
if hasattr(shared, 'loaded_hypernetwork'): | |
initial_hypernetwork = shared.loaded_hypernetwork | |
else: | |
shared.loaded_hypernetworks = [] | |
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' | |
try: | |
sd_hijack.undo_optimizations() | |
hypernetwork, filename = train_hypernetwork_external(*args) | |
res = f""" | |
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. | |
Hypernetwork saved to {html.escape(filename)} | |
""" | |
return res, "" | |
except Exception: | |
raise | |
finally: | |
if hasattr(shared, 'loaded_hypernetwork'): | |
shared.loaded_hypernetwork = initial_hypernetwork | |
else: | |
shared.loaded_hypernetworks = [] | |
# check hypernetwork is bounded then delete it | |
if locals().get('hypernetwork', None) is not None: | |
del hypernetwork | |
gc.collect() | |
shared.sd_model.cond_stage_model.to(devices.device) | |
shared.sd_model.first_stage_model.to(devices.device) | |
sd_hijack.apply_optimizations() | |
def train_hypernetwork_ui_tuning(*args): | |
initial_hypernetwork = None | |
if hasattr(shared, 'loaded_hypernetwork'): | |
initial_hypernetwork = shared.loaded_hypernetwork | |
else: | |
shared.loaded_hypernetworks = [] | |
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' | |
try: | |
sd_hijack.undo_optimizations() | |
train_hypernetwork_tuning(*args) | |
res = f""" | |
Training {'interrupted' if shared.state.interrupted else 'finished'}. | |
""" | |
return res, "" | |
except Exception: | |
raise | |
finally: | |
if hasattr(shared, 'loaded_hypernetwork'): | |
shared.loaded_hypernetwork = initial_hypernetwork | |
else: | |
shared.loaded_hypernetworks = [] | |
shared.sd_model.cond_stage_model.to(devices.device) | |
shared.sd_model.first_stage_model.to(devices.device) | |
sd_hijack.apply_optimizations() | |
def save_training_setting(*args): | |
save_file_name, learn_rate, batch_size, gradient_step, training_width, \ | |
training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, \ | |
template_file, use_beta_scheduler, beta_repeat_epoch, epoch_mult, warmup, min_lr, \ | |
gamma_rate, use_beta_adamW_checkbox, save_when_converge, create_when_converge, \ | |
adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps, show_gradient_clip_checkbox, \ | |
gradient_clip_opt, optional_gradient_clip_value, optional_gradient_norm_type, latent_sampling_std,\ | |
noise_training_scheduler_enabled, noise_training_scheduler_repeat, noise_training_scheduler_cycle, loss_opt, use_dadaptation, dadapt_growth_factor, use_weight = args | |
dumped_locals = locals() | |
dumped_locals.pop('args') | |
filename = (str(random.randint(0, 1024)) if save_file_name == '' else save_file_name) + '_train_' + '.json' | |
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename) | |
with open(filename, 'w') as file: | |
print(dumped_locals) | |
json.dump(dumped_locals, file) | |
print(f"File saved as {filename}") | |
return filename, "" | |
def save_hypernetwork_setting(*args): | |
save_file_name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure, optional_info, weight_init_seed, normal_std, skip_connection = args | |
dumped_locals = locals() | |
dumped_locals.pop('args') | |
filename = (str(random.randint(0, 1024)) if save_file_name == '' else save_file_name) + '_hypernetwork_' + '.json' | |
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename) | |
with open(filename, 'w') as file: | |
print(dumped_locals) | |
json.dump(dumped_locals, file) | |
print(f"File saved as {filename}") | |
return filename, "" | |
def on_train_gamma_tab(params=None): | |
dummy_component = gr.Label(visible=False) | |
with gr.Tab(label="Train_Gamma") as train_gamma: | |
gr.HTML( | |
value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>") | |
with gr.Row(): | |
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted( | |
sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) | |
create_refresh_button(train_embedding_name, | |
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: { | |
"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, | |
"refresh_train_embedding_name") | |
with gr.Row(): | |
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", | |
choices=[x for x in shared.hypernetworks.keys()]) | |
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, | |
lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, | |
"refresh_train_hypernetwork_name") | |
with gr.Row(): | |
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', | |
placeholder="Embedding Learning rate", value="0.005") | |
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', | |
placeholder="Hypernetwork Learning rate", value="0.00004") | |
use_beta_scheduler_checkbox = gr.Checkbox( | |
label='Show advanced learn rate scheduler options') | |
use_beta_adamW_checkbox = gr.Checkbox( | |
label='Show advanced adamW parameter options)') | |
show_gradient_clip_checkbox = gr.Checkbox( | |
label='Show Gradient Clipping Options(for both)') | |
show_noise_options = gr.Checkbox( | |
label='Show Noise Scheduler Options(for both)') | |
with gr.Row(visible=False) as adamW_options: | |
use_dadaptation = gr.Checkbox(label="Uses D-Adaptation(LR Free) AdamW. Recommended LR is 1.0 at base") | |
adamw_weight_decay = gr.Textbox(label="AdamW weight decay parameter", placeholder="default = 0.01", | |
value="0.01") | |
adamw_beta_1 = gr.Textbox(label="AdamW beta1 parameter", placeholder="default = 0.9", value="0.9") | |
adamw_beta_2 = gr.Textbox(label="AdamW beta2 parameter", placeholder="default = 0.99", value="0.99") | |
adamw_eps = gr.Textbox(label="AdamW epsilon parameter", placeholder="default = 1e-8", value="1e-8") | |
with gr.Row(visible=False) as dadapt_growth_options: | |
dadapt_growth_factor = gr.Number(value=-1, label='Growth factor limiting, use value like 1.02 or leave it as -1') | |
with gr.Row(visible=False) as beta_scheduler_options: | |
use_beta_scheduler = gr.Checkbox(label='Use CosineAnnealingWarmupRestarts Scheduler') | |
beta_repeat_epoch = gr.Textbox(label='Steps for cycle', placeholder="Cycles every nth Step", value="64") | |
epoch_mult = gr.Textbox(label='Step multiplier per cycle', placeholder="Step length multiplier every cycle", | |
value="1") | |
warmup = gr.Textbox(label='Warmup step per cycle', placeholder="CosineAnnealing lr increase step", | |
value="5") | |
min_lr = gr.Textbox(label='Minimum learning rate', | |
placeholder="restricts decay value, but does not restrict gamma rate decay", | |
value="6e-7") | |
gamma_rate = gr.Textbox(label='Decays learning rate every cycle', | |
placeholder="Value should be in (0-1]", value="1") | |
with gr.Row(visible=False) as beta_scheduler_options2: | |
save_converge_opt = gr.Checkbox(label="Saves when every cycle finishes") | |
generate_converge_opt = gr.Checkbox(label="Generates image when every cycle finishes") | |
with gr.Row(visible=False) as gradient_clip_options: | |
gradient_clip_opt = gr.Radio(label="Gradient Clipping Options", choices=["None", "limit", "norm"]) | |
optional_gradient_clip_value = gr.Textbox(label="Limiting value", value="1e-1") | |
optional_gradient_norm_type = gr.Textbox(label="Norm type", value="2") | |
with gr.Row(visible=False) as noise_scheduler_options: | |
noise_training_scheduler_enabled = gr.Checkbox(label="Use Noise training scheduler(test)") | |
noise_training_scheduler_repeat = gr.Checkbox(label="Restarts noise scheduler, or linear") | |
noise_training_scheduler_cycle = gr.Number(label="Restarts noise scheduler every nth epoch") | |
use_weight = gr.Checkbox(label="Uses image alpha(transparency) channel for adjusting loss") | |
# change by feedback | |
use_dadaptation.change( | |
fn=lambda show: gr_show(show), | |
inputs=[use_dadaptation], | |
outputs=[dadapt_growth_options] | |
) | |
show_noise_options.change( | |
fn = lambda show:gr_show(show), | |
inputs = [show_noise_options], | |
outputs = [noise_scheduler_options] | |
) | |
use_beta_adamW_checkbox.change( | |
fn=lambda show: gr_show(show), | |
inputs=[use_beta_adamW_checkbox], | |
outputs=[adamW_options], | |
) | |
use_beta_scheduler_checkbox.change( | |
fn=lambda show: gr_show(show), | |
inputs=[use_beta_scheduler_checkbox], | |
outputs=[beta_scheduler_options], | |
) | |
use_beta_scheduler_checkbox.change( | |
fn=lambda show: gr_show(show), | |
inputs=[use_beta_scheduler_checkbox], | |
outputs=[beta_scheduler_options2], | |
) | |
show_gradient_clip_checkbox.change( | |
fn=lambda show: gr_show(show), | |
inputs=[show_gradient_clip_checkbox], | |
outputs=[gradient_clip_options], | |
) | |
move_optim_when_generate = gr.Checkbox(label="Unload Optimizer when generating preview(hypernetwork)", | |
value=True) | |
batch_size = gr.Number(label='Batch size', value=1, precision=0) | |
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0) | |
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") | |
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", | |
value="textual_inversion") | |
template_file = gr.Textbox(label='Prompt template file', | |
value=os.path.join(script_path, "textual_inversion_templates", | |
"style_filewords.txt")) | |
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) | |
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) | |
steps = gr.Number(label='Max steps', value=100000, precision=0) | |
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', | |
value=500, precision=0) | |
save_embedding_every = gr.Number( | |
label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) | |
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) | |
preview_from_txt2img = gr.Checkbox( | |
label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) | |
with gr.Row(): | |
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False) | |
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", | |
value=0) | |
with gr.Row(): | |
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", | |
choices=['once', 'deterministic', 'random']) | |
latent_sampling_std_value = gr.Number(label="Standard deviation for sampling", value=-1) | |
with gr.Row(): | |
loss_opt = gr.Radio(label="loss type", value="loss", | |
choices=['loss', 'loss_simple', 'loss_vlb']) | |
with gr.Row(): | |
save_training_option = gr.Button(value="Save training setting") | |
save_file_name = gr.Textbox(label="File name to save setting as", value="") | |
load_training_option = gr.Textbox( | |
label="Load training option from saved json file. This will override settings above", value="") | |
with gr.Row(): | |
interrupt_training = gr.Button(value="Interrupt") | |
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary') | |
train_embedding = gr.Button(value="Train Embedding", variant='primary') | |
ti_output = gr.Text(elem_id="ti_output3", value="", show_label=False) | |
ti_outcome = gr.HTML(elem_id="ti_error3", value="") | |
# Full path to .json or simple names are recommended. | |
save_training_option.click( | |
fn=wrap_gradio_call(save_training_setting), | |
inputs=[ | |
save_file_name, | |
hypernetwork_learn_rate, | |
batch_size, | |
gradient_step, | |
training_width, | |
training_height, | |
steps, | |
shuffle_tags, | |
tag_drop_out, | |
latent_sampling_method, | |
template_file, | |
use_beta_scheduler, | |
beta_repeat_epoch, | |
epoch_mult, | |
warmup, | |
min_lr, | |
gamma_rate, | |
use_beta_adamW_checkbox, | |
save_converge_opt, | |
generate_converge_opt, | |
adamw_weight_decay, | |
adamw_beta_1, | |
adamw_beta_2, | |
adamw_eps, | |
show_gradient_clip_checkbox, | |
gradient_clip_opt, | |
optional_gradient_clip_value, | |
optional_gradient_norm_type, | |
latent_sampling_std_value, | |
noise_training_scheduler_enabled, | |
noise_training_scheduler_repeat, | |
noise_training_scheduler_cycle, | |
loss_opt, | |
use_dadaptation, | |
dadapt_growth_factor, | |
use_weight | |
], | |
outputs=[ | |
ti_output, | |
ti_outcome, | |
] | |
) | |
train_embedding.click( | |
fn=wrap_gradio_gpu_call(train_embedding_external, extra_outputs=[gr.update()]), | |
_js="start_training_textual_inversion", | |
inputs=[ | |
dummy_component, | |
train_embedding_name, | |
embedding_learn_rate, | |
batch_size, | |
gradient_step, | |
dataset_directory, | |
log_directory, | |
training_width, | |
training_height, | |
steps, | |
shuffle_tags, | |
tag_drop_out, | |
latent_sampling_method, | |
create_image_every, | |
save_embedding_every, | |
template_file, | |
save_image_with_stored_embedding, | |
preview_from_txt2img, | |
*params.txt2img_preview_params, | |
use_beta_scheduler, | |
beta_repeat_epoch, | |
epoch_mult, | |
warmup, | |
min_lr, | |
gamma_rate, | |
save_converge_opt, | |
generate_converge_opt, | |
move_optim_when_generate, | |
use_beta_adamW_checkbox, | |
adamw_weight_decay, | |
adamw_beta_1, | |
adamw_beta_2, | |
adamw_eps, | |
show_gradient_clip_checkbox, | |
gradient_clip_opt, | |
optional_gradient_clip_value, | |
optional_gradient_norm_type, | |
latent_sampling_std_value, | |
use_weight | |
], | |
outputs=[ | |
ti_output, | |
ti_outcome, | |
] | |
) | |
train_hypernetwork.click( | |
fn=wrap_gradio_gpu_call(train_hypernetwork_ui, extra_outputs=[gr.update()]), | |
_js="start_training_textual_inversion", | |
inputs=[ | |
dummy_component, | |
train_hypernetwork_name, | |
hypernetwork_learn_rate, | |
batch_size, | |
gradient_step, | |
dataset_directory, | |
log_directory, | |
training_width, | |
training_height, | |
steps, | |
shuffle_tags, | |
tag_drop_out, | |
latent_sampling_method, | |
create_image_every, | |
save_embedding_every, | |
template_file, | |
preview_from_txt2img, | |
*params.txt2img_preview_params, | |
use_beta_scheduler, | |
beta_repeat_epoch, | |
epoch_mult, | |
warmup, | |
min_lr, | |
gamma_rate, | |
save_converge_opt, | |
generate_converge_opt, | |
move_optim_when_generate, | |
use_beta_adamW_checkbox, | |
adamw_weight_decay, | |
adamw_beta_1, | |
adamw_beta_2, | |
adamw_eps, | |
show_gradient_clip_checkbox, | |
gradient_clip_opt, | |
optional_gradient_clip_value, | |
optional_gradient_norm_type, | |
latent_sampling_std_value, | |
noise_training_scheduler_enabled, | |
noise_training_scheduler_repeat, | |
noise_training_scheduler_cycle, | |
load_training_option, | |
loss_opt, | |
use_dadaptation, | |
dadapt_growth_factor, | |
use_weight | |
], | |
outputs=[ | |
ti_output, | |
ti_outcome, | |
] | |
) | |
interrupt_training.click( | |
fn=lambda: shared.state.interrupt(), | |
inputs=[], | |
outputs=[], | |
) | |
return [(train_gamma, "Train Gamma", "train_gamma")] | |
def on_train_tuning(params=None): | |
dummy_component = gr.Label(visible=False) | |
with gr.Tab(label="Train_Tuning") as train_tuning: | |
gr.HTML( | |
value="<p style='margin-bottom: 0.7em'>Train Hypernetwork; you must specify a directory <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>") | |
with gr.Row(): | |
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", | |
choices=[x for x in shared.hypernetworks.keys()]) | |
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, | |
lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, | |
"refresh_train_hypernetwork_name") | |
optional_new_hypernetwork_name = gr.Textbox( | |
label="Hypernetwork name to create, leave it empty to use selected", value="") | |
with gr.Row(): | |
load_hypernetworks_option = gr.Textbox( | |
label="Load Hypernetwork creation option from saved json file", | |
placeholder=". filename cannot have ',' inside, and files should be splitted by ','.", value="") | |
with gr.Row(): | |
load_training_options = gr.Textbox( | |
label="Load training option(s) from saved json file", | |
placeholder=". filename cannot have ',' inside, and files should be splitted by ','.", value="") | |
move_optim_when_generate = gr.Checkbox(label="Unload Optimizer when generating preview(hypernetwork)", | |
value=True) | |
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") | |
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", | |
value="textual_inversion") | |
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', | |
value=500, precision=0) | |
save_model_every = gr.Number( | |
label='Save a copy of model to log directory every N steps, 0 to disable', value=500, precision=0) | |
preview_from_txt2img = gr.Checkbox( | |
label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) | |
manual_dataset_seed = gr.Number( | |
label="Manual dataset seed", value=-1, precision=0 | |
) | |
with gr.Row(): | |
interrupt_training = gr.Button(value="Interrupt") | |
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary') | |
ti_output = gr.Text(elem_id="ti_output4", value="", show_label=False) | |
ti_outcome = gr.HTML(elem_id="ti_error4", value="") | |
train_hypernetwork.click( | |
fn=wrap_gradio_gpu_call(train_hypernetwork_ui_tuning, extra_outputs=[gr.update()]), | |
_js="start_training_textual_inversion", | |
inputs=[ | |
dummy_component, | |
train_hypernetwork_name, | |
dataset_directory, | |
log_directory, | |
create_image_every, | |
save_model_every, | |
preview_from_txt2img, | |
*params.txt2img_preview_params, | |
move_optim_when_generate, | |
optional_new_hypernetwork_name, | |
load_hypernetworks_option, | |
load_training_options, | |
manual_dataset_seed | |
], | |
outputs=[ | |
ti_output, | |
ti_outcome, | |
] | |
) | |
interrupt_training.click( | |
fn=lambda: shared.state.interrupt(), | |
inputs=[], | |
outputs=[], | |
) | |
return [(train_tuning, "Train Tuning", "train_tuning")] | |