raoulduke420's picture
Upload folder using huggingface_hub
ef9fd1f
import gc
import html
import json
import os
import random
from modules import shared, sd_hijack, devices
from modules.call_queue import wrap_gradio_call
from modules.paths import script_path
from modules.ui import create_refresh_button, gr_show
from webui import wrap_gradio_gpu_call
from .textual_inversion import train_embedding as train_embedding_external
from .hypernetwork import train_hypernetwork as train_hypernetwork_external, train_hypernetwork_tuning
import gradio as gr
def train_hypernetwork_ui(*args):
initial_hypernetwork = None
if hasattr(shared, 'loaded_hypernetwork'):
initial_hypernetwork = shared.loaded_hypernetwork
else:
shared.loaded_hypernetworks = []
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
try:
sd_hijack.undo_optimizations()
hypernetwork, filename = train_hypernetwork_external(*args)
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
return res, ""
except Exception:
raise
finally:
if hasattr(shared, 'loaded_hypernetwork'):
shared.loaded_hypernetwork = initial_hypernetwork
else:
shared.loaded_hypernetworks = []
# check hypernetwork is bounded then delete it
if locals().get('hypernetwork', None) is not None:
del hypernetwork
gc.collect()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()
def train_hypernetwork_ui_tuning(*args):
initial_hypernetwork = None
if hasattr(shared, 'loaded_hypernetwork'):
initial_hypernetwork = shared.loaded_hypernetwork
else:
shared.loaded_hypernetworks = []
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
try:
sd_hijack.undo_optimizations()
train_hypernetwork_tuning(*args)
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'}.
"""
return res, ""
except Exception:
raise
finally:
if hasattr(shared, 'loaded_hypernetwork'):
shared.loaded_hypernetwork = initial_hypernetwork
else:
shared.loaded_hypernetworks = []
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()
def save_training_setting(*args):
save_file_name, learn_rate, batch_size, gradient_step, training_width, \
training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, \
template_file, use_beta_scheduler, beta_repeat_epoch, epoch_mult, warmup, min_lr, \
gamma_rate, use_beta_adamW_checkbox, save_when_converge, create_when_converge, \
adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps, show_gradient_clip_checkbox, \
gradient_clip_opt, optional_gradient_clip_value, optional_gradient_norm_type, latent_sampling_std,\
noise_training_scheduler_enabled, noise_training_scheduler_repeat, noise_training_scheduler_cycle, loss_opt, use_dadaptation, dadapt_growth_factor, use_weight = args
dumped_locals = locals()
dumped_locals.pop('args')
filename = (str(random.randint(0, 1024)) if save_file_name == '' else save_file_name) + '_train_' + '.json'
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename)
with open(filename, 'w') as file:
print(dumped_locals)
json.dump(dumped_locals, file)
print(f"File saved as {filename}")
return filename, ""
def save_hypernetwork_setting(*args):
save_file_name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure, optional_info, weight_init_seed, normal_std, skip_connection = args
dumped_locals = locals()
dumped_locals.pop('args')
filename = (str(random.randint(0, 1024)) if save_file_name == '' else save_file_name) + '_hypernetwork_' + '.json'
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename)
with open(filename, 'w') as file:
print(dumped_locals)
json.dump(dumped_locals, file)
print(f"File saved as {filename}")
return filename, ""
def on_train_gamma_tab(params=None):
dummy_component = gr.Label(visible=False)
with gr.Tab(label="Train_Gamma") as train_gamma:
gr.HTML(
value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(
sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name,
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {
"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())},
"refresh_train_embedding_name")
with gr.Row():
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork",
choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks,
lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])},
"refresh_train_hypernetwork_name")
with gr.Row():
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate',
placeholder="Embedding Learning rate", value="0.005")
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate',
placeholder="Hypernetwork Learning rate", value="0.00004")
use_beta_scheduler_checkbox = gr.Checkbox(
label='Show advanced learn rate scheduler options')
use_beta_adamW_checkbox = gr.Checkbox(
label='Show advanced adamW parameter options)')
show_gradient_clip_checkbox = gr.Checkbox(
label='Show Gradient Clipping Options(for both)')
show_noise_options = gr.Checkbox(
label='Show Noise Scheduler Options(for both)')
with gr.Row(visible=False) as adamW_options:
use_dadaptation = gr.Checkbox(label="Uses D-Adaptation(LR Free) AdamW. Recommended LR is 1.0 at base")
adamw_weight_decay = gr.Textbox(label="AdamW weight decay parameter", placeholder="default = 0.01",
value="0.01")
adamw_beta_1 = gr.Textbox(label="AdamW beta1 parameter", placeholder="default = 0.9", value="0.9")
adamw_beta_2 = gr.Textbox(label="AdamW beta2 parameter", placeholder="default = 0.99", value="0.99")
adamw_eps = gr.Textbox(label="AdamW epsilon parameter", placeholder="default = 1e-8", value="1e-8")
with gr.Row(visible=False) as dadapt_growth_options:
dadapt_growth_factor = gr.Number(value=-1, label='Growth factor limiting, use value like 1.02 or leave it as -1')
with gr.Row(visible=False) as beta_scheduler_options:
use_beta_scheduler = gr.Checkbox(label='Use CosineAnnealingWarmupRestarts Scheduler')
beta_repeat_epoch = gr.Textbox(label='Steps for cycle', placeholder="Cycles every nth Step", value="64")
epoch_mult = gr.Textbox(label='Step multiplier per cycle', placeholder="Step length multiplier every cycle",
value="1")
warmup = gr.Textbox(label='Warmup step per cycle', placeholder="CosineAnnealing lr increase step",
value="5")
min_lr = gr.Textbox(label='Minimum learning rate',
placeholder="restricts decay value, but does not restrict gamma rate decay",
value="6e-7")
gamma_rate = gr.Textbox(label='Decays learning rate every cycle',
placeholder="Value should be in (0-1]", value="1")
with gr.Row(visible=False) as beta_scheduler_options2:
save_converge_opt = gr.Checkbox(label="Saves when every cycle finishes")
generate_converge_opt = gr.Checkbox(label="Generates image when every cycle finishes")
with gr.Row(visible=False) as gradient_clip_options:
gradient_clip_opt = gr.Radio(label="Gradient Clipping Options", choices=["None", "limit", "norm"])
optional_gradient_clip_value = gr.Textbox(label="Limiting value", value="1e-1")
optional_gradient_norm_type = gr.Textbox(label="Norm type", value="2")
with gr.Row(visible=False) as noise_scheduler_options:
noise_training_scheduler_enabled = gr.Checkbox(label="Use Noise training scheduler(test)")
noise_training_scheduler_repeat = gr.Checkbox(label="Restarts noise scheduler, or linear")
noise_training_scheduler_cycle = gr.Number(label="Restarts noise scheduler every nth epoch")
use_weight = gr.Checkbox(label="Uses image alpha(transparency) channel for adjusting loss")
# change by feedback
use_dadaptation.change(
fn=lambda show: gr_show(show),
inputs=[use_dadaptation],
outputs=[dadapt_growth_options]
)
show_noise_options.change(
fn = lambda show:gr_show(show),
inputs = [show_noise_options],
outputs = [noise_scheduler_options]
)
use_beta_adamW_checkbox.change(
fn=lambda show: gr_show(show),
inputs=[use_beta_adamW_checkbox],
outputs=[adamW_options],
)
use_beta_scheduler_checkbox.change(
fn=lambda show: gr_show(show),
inputs=[use_beta_scheduler_checkbox],
outputs=[beta_scheduler_options],
)
use_beta_scheduler_checkbox.change(
fn=lambda show: gr_show(show),
inputs=[use_beta_scheduler_checkbox],
outputs=[beta_scheduler_options2],
)
show_gradient_clip_checkbox.change(
fn=lambda show: gr_show(show),
inputs=[show_gradient_clip_checkbox],
outputs=[gradient_clip_options],
)
move_optim_when_generate = gr.Checkbox(label="Unload Optimizer when generating preview(hypernetwork)",
value=True)
batch_size = gr.Number(label='Batch size', value=1, precision=0)
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs",
value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file',
value=os.path.join(script_path, "textual_inversion_templates",
"style_filewords.txt"))
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
steps = gr.Number(label='Max steps', value=100000, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable',
value=500, precision=0)
save_embedding_every = gr.Number(
label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
preview_from_txt2img = gr.Checkbox(
label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
with gr.Row():
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False)
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.",
value=0)
with gr.Row():
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once",
choices=['once', 'deterministic', 'random'])
latent_sampling_std_value = gr.Number(label="Standard deviation for sampling", value=-1)
with gr.Row():
loss_opt = gr.Radio(label="loss type", value="loss",
choices=['loss', 'loss_simple', 'loss_vlb'])
with gr.Row():
save_training_option = gr.Button(value="Save training setting")
save_file_name = gr.Textbox(label="File name to save setting as", value="")
load_training_option = gr.Textbox(
label="Load training option from saved json file. This will override settings above", value="")
with gr.Row():
interrupt_training = gr.Button(value="Interrupt")
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
train_embedding = gr.Button(value="Train Embedding", variant='primary')
ti_output = gr.Text(elem_id="ti_output3", value="", show_label=False)
ti_outcome = gr.HTML(elem_id="ti_error3", value="")
# Full path to .json or simple names are recommended.
save_training_option.click(
fn=wrap_gradio_call(save_training_setting),
inputs=[
save_file_name,
hypernetwork_learn_rate,
batch_size,
gradient_step,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
template_file,
use_beta_scheduler,
beta_repeat_epoch,
epoch_mult,
warmup,
min_lr,
gamma_rate,
use_beta_adamW_checkbox,
save_converge_opt,
generate_converge_opt,
adamw_weight_decay,
adamw_beta_1,
adamw_beta_2,
adamw_eps,
show_gradient_clip_checkbox,
gradient_clip_opt,
optional_gradient_clip_value,
optional_gradient_norm_type,
latent_sampling_std_value,
noise_training_scheduler_enabled,
noise_training_scheduler_repeat,
noise_training_scheduler_cycle,
loss_opt,
use_dadaptation,
dadapt_growth_factor,
use_weight
],
outputs=[
ti_output,
ti_outcome,
]
)
train_embedding.click(
fn=wrap_gradio_gpu_call(train_embedding_external, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
train_embedding_name,
embedding_learn_rate,
batch_size,
gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
save_image_with_stored_embedding,
preview_from_txt2img,
*params.txt2img_preview_params,
use_beta_scheduler,
beta_repeat_epoch,
epoch_mult,
warmup,
min_lr,
gamma_rate,
save_converge_opt,
generate_converge_opt,
move_optim_when_generate,
use_beta_adamW_checkbox,
adamw_weight_decay,
adamw_beta_1,
adamw_beta_2,
adamw_eps,
show_gradient_clip_checkbox,
gradient_clip_opt,
optional_gradient_clip_value,
optional_gradient_norm_type,
latent_sampling_std_value,
use_weight
],
outputs=[
ti_output,
ti_outcome,
]
)
train_hypernetwork.click(
fn=wrap_gradio_gpu_call(train_hypernetwork_ui, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
train_hypernetwork_name,
hypernetwork_learn_rate,
batch_size,
gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
preview_from_txt2img,
*params.txt2img_preview_params,
use_beta_scheduler,
beta_repeat_epoch,
epoch_mult,
warmup,
min_lr,
gamma_rate,
save_converge_opt,
generate_converge_opt,
move_optim_when_generate,
use_beta_adamW_checkbox,
adamw_weight_decay,
adamw_beta_1,
adamw_beta_2,
adamw_eps,
show_gradient_clip_checkbox,
gradient_clip_opt,
optional_gradient_clip_value,
optional_gradient_norm_type,
latent_sampling_std_value,
noise_training_scheduler_enabled,
noise_training_scheduler_repeat,
noise_training_scheduler_cycle,
load_training_option,
loss_opt,
use_dadaptation,
dadapt_growth_factor,
use_weight
],
outputs=[
ti_output,
ti_outcome,
]
)
interrupt_training.click(
fn=lambda: shared.state.interrupt(),
inputs=[],
outputs=[],
)
return [(train_gamma, "Train Gamma", "train_gamma")]
def on_train_tuning(params=None):
dummy_component = gr.Label(visible=False)
with gr.Tab(label="Train_Tuning") as train_tuning:
gr.HTML(
value="<p style='margin-bottom: 0.7em'>Train Hypernetwork; you must specify a directory <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with gr.Row():
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork",
choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks,
lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])},
"refresh_train_hypernetwork_name")
optional_new_hypernetwork_name = gr.Textbox(
label="Hypernetwork name to create, leave it empty to use selected", value="")
with gr.Row():
load_hypernetworks_option = gr.Textbox(
label="Load Hypernetwork creation option from saved json file",
placeholder=". filename cannot have ',' inside, and files should be splitted by ','.", value="")
with gr.Row():
load_training_options = gr.Textbox(
label="Load training option(s) from saved json file",
placeholder=". filename cannot have ',' inside, and files should be splitted by ','.", value="")
move_optim_when_generate = gr.Checkbox(label="Unload Optimizer when generating preview(hypernetwork)",
value=True)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs",
value="textual_inversion")
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable',
value=500, precision=0)
save_model_every = gr.Number(
label='Save a copy of model to log directory every N steps, 0 to disable', value=500, precision=0)
preview_from_txt2img = gr.Checkbox(
label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
manual_dataset_seed = gr.Number(
label="Manual dataset seed", value=-1, precision=0
)
with gr.Row():
interrupt_training = gr.Button(value="Interrupt")
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
ti_output = gr.Text(elem_id="ti_output4", value="", show_label=False)
ti_outcome = gr.HTML(elem_id="ti_error4", value="")
train_hypernetwork.click(
fn=wrap_gradio_gpu_call(train_hypernetwork_ui_tuning, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
train_hypernetwork_name,
dataset_directory,
log_directory,
create_image_every,
save_model_every,
preview_from_txt2img,
*params.txt2img_preview_params,
move_optim_when_generate,
optional_new_hypernetwork_name,
load_hypernetworks_option,
load_training_options,
manual_dataset_seed
],
outputs=[
ti_output,
ti_outcome,
]
)
interrupt_training.click(
fn=lambda: shared.state.interrupt(),
inputs=[],
outputs=[],
)
return [(train_tuning, "Train Tuning", "train_tuning")]