raoulduke420's picture
Upload folder using huggingface_hub
ef9fd1f
import csv
import datetime
import gc
import html
import os
import sys
import traceback
import torch
import tqdm
from PIL import PngImagePlugin
from modules import shared, devices, sd_models, images, processing, sd_samplers, sd_hijack, sd_hijack_checkpoint
from modules.textual_inversion.image_embedding import caption_image_overlay, insert_image_data_embed, embedding_to_b64
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.textual_inversion import save_embedding
from .dataset import PersonalizedBase, PersonalizedDataLoader
from ..hnutil import optim_to
from ..scheduler import CosineAnnealingWarmUpRestarts
from ..tbutils import tensorboard_setup, tensorboard_add_image
# apply OsError avoid here
delayed_values = {}
def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
try:
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
if write_csv_header:
csv_writer.writeheader()
if log_directory + filename in delayed_values:
delayed = delayed_values[log_directory + filename]
for step, epoch, epoch_step, values in delayed:
csv_writer.writerow({
"step": step,
"epoch": epoch,
"epoch_step": epoch_step,
**values,
})
delayed.clear()
epoch, epoch_step = divmod(step - 1, epoch_len)
csv_writer.writerow({
"step": step,
"epoch": epoch,
"epoch_step": epoch_step,
**values,
})
except OSError:
epoch, epoch_step = divmod(step - 1, epoch_len)
if log_directory + filename in delayed_values:
delayed_values[log_directory + filename].append((step, epoch, epoch_step, values))
else:
delayed_values[log_directory + filename] = [(step, epoch, epoch_step, values)]
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps,
save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
assert isinstance(batch_size, int), "Batch size must be integer"
assert batch_size > 0, "Batch size must be positive"
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
assert gradient_step > 0, "Gradient accumulation step must be positive"
assert data_root, "Dataset directory is empty"
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
assert template_file, "Prompt template file is empty"
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
assert steps, "Max steps is empty or 0"
assert isinstance(steps, int), "Max steps must be integer"
assert steps > 0, "Max steps must be positive"
assert isinstance(save_model_every, int), "Save {name} must be integer"
assert save_model_every >= 0, "Save {name} must be positive or 0"
assert isinstance(create_image_every, int), "Create image must be integer"
assert create_image_every >= 0, "Create image must be positive or 0"
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory,
training_width,
training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every,
save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img,
preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale,
preview_seed, preview_width, preview_height,
use_beta_scheduler=False, beta_repeat_epoch=4000, epoch_mult=1, warmup=10, min_lr=1e-7,
gamma_rate=1, save_when_converge=False, create_when_converge=False,
move_optimizer=True,
use_adamw_parameter=False, adamw_weight_decay=0.01, adamw_beta_1=0.9, adamw_beta_2=0.99,
adamw_eps=1e-8,
use_grad_opts=False, gradient_clip_opt='None', optional_gradient_clip_value=1e01,
optional_gradient_norm_type=2, latent_sampling_std=-1, use_weight=False
):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps,
save_embedding_every, create_image_every, log_directory, name="embedding")
try:
if use_adamw_parameter:
adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps = [float(x) for x in
[adamw_weight_decay, adamw_beta_1,
adamw_beta_2, adamw_eps]]
assert 0 <= adamw_weight_decay, "Weight decay paramter should be larger or equal than zero!"
assert (all(0 <= x <= 1 for x in [adamw_beta_1, adamw_beta_2,
adamw_eps])), "Cannot use negative or >1 number for adamW parameters!"
adamW_kwarg_dict = {
'weight_decay': adamw_weight_decay,
'betas': (adamw_beta_1, adamw_beta_2),
'eps': adamw_eps
}
print('Using custom AdamW parameters')
else:
adamW_kwarg_dict = {
'weight_decay': 0.01,
'betas': (0.9, 0.99),
'eps': 1e-8
}
if use_beta_scheduler:
print("Using Beta Scheduler")
beta_repeat_epoch = int(beta_repeat_epoch)
assert beta_repeat_epoch > 0, f"Cannot use too small cycle {beta_repeat_epoch}!"
min_lr = float(min_lr)
assert min_lr < 1, f"Cannot use minimum lr with {min_lr}!"
gamma_rate = float(gamma_rate)
print(f"Using learn rate decay(per cycle) of {gamma_rate}")
assert 0 <= gamma_rate <= 1, f"Cannot use gamma rate with {gamma_rate}!"
epoch_mult = float(epoch_mult)
assert 1 <= epoch_mult, "Cannot use epoch multiplier smaller than 1!"
warmup = int(warmup)
assert warmup >= 1, "Warmup epoch should be larger than 0!"
print(f"Save when converges : {save_when_converge}")
print(f"Generate image when converges : {create_when_converge}")
else:
beta_repeat_epoch = 4000
epoch_mult = 1
warmup = 10
min_lr = 1e-7
gamma_rate = 1
save_when_converge = False
create_when_converge = False
except ValueError:
raise RuntimeError("Cannot use advanced LR scheduler settings!")
if use_grad_opts and gradient_clip_opt != "None":
try:
optional_gradient_clip_value = float(optional_gradient_clip_value)
except ValueError:
raise RuntimeError(f"Cannot convert invalid gradient clipping value {optional_gradient_clip_value})")
if gradient_clip_opt == "Norm":
try:
grad_norm = int(optional_gradient_norm_type)
except ValueError:
raise RuntimeError(f"Cannot convert invalid gradient norm type {optional_gradient_norm_type})")
assert grad_norm >= 0, f"P-norm cannot be calculated from negative number {grad_norm}"
def gradient_clipping(arg1):
torch.nn.utils.clip_grad_norm_(arg1, optional_gradient_clip_value, optional_gradient_norm_type)
return
else:
def gradient_clipping(arg1):
torch.nn.utils.clip_grad_value_(arg1, optional_gradient_clip_value)
return
else:
def gradient_clipping(arg1):
return
# Function gradient clipping is inplace(_) operation.
shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
unload = shared.opts.unload_models_when_training
if save_embedding_every > 0 or save_when_converge:
embedding_dir = os.path.join(log_directory, "embeddings")
os.makedirs(embedding_dir, exist_ok=True)
else:
embedding_dir = None
if create_image_every > 0 or create_when_converge:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
else:
images_dir = None
if (create_image_every > 0 or create_when_converge) and save_image_with_stored_embedding:
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
os.makedirs(images_embeds_dir, exist_ok=True)
else:
images_embeds_dir = None
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
checkpoint = sd_models.select_checkpoint()
initial_step = embedding.step or 0
if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return embedding, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
tensorboard_writer = None
if shared.opts.training_enable_tensorboard:
print("Tensorboard logging enabled")
tensorboard_writer = tensorboard_setup(log_directory)
pin_memory = shared.opts.pin_memory
detach_grad = shared.opts.disable_ema # test code that removes EMA
if detach_grad:
print("Disabling training for staged models!")
shared.sd_model.cond_stage_model.requires_grad_(False)
shared.sd_model.first_stage_model.requires_grad_(False)
torch.cuda.empty_cache()
ds = PersonalizedBase(data_root=data_root, width=training_width,
height=training_height,
repeats=shared.opts.training_image_repeats_per_epoch,
placeholder_token=embedding_name, model=shared.sd_model,
cond_model=shared.sd_model.cond_stage_model,
device=devices.device, template_file=template_file,
batch_size=batch_size, gradient_step=gradient_step,
shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out,
latent_sampling_method=latent_sampling_method,
latent_sampling_std=latent_sampling_std, use_weight=use_weight)
latent_sampling_method = ds.latent_sampling_method
dl = PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method,
batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.parallel_processing_allowed = False
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad_(True)
optimizer_name = 'AdamW' # hardcoded optimizer name now
if use_adamw_parameter:
optimizer = torch.optim.AdamW(params=[embedding.vec], lr=scheduler.learn_rate, **adamW_kwarg_dict)
else:
optimizer = torch.optim.AdamW(params=[embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
if os.path.exists(
filename + '.optim'): # This line must be changed if Optimizer type can be different from saved optimizer.
try:
optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
print("Loaded existing optimizer from checkpoint")
except RuntimeError as e:
print("Cannot resume from saved optimizer!")
print(e)
else:
print("No saved optimizer exists in checkpoint")
if move_optimizer:
optim_to(optimizer, devices.device)
if use_beta_scheduler:
scheduler_beta = CosineAnnealingWarmUpRestarts(optimizer=optimizer, first_cycle_steps=beta_repeat_epoch,
cycle_mult=epoch_mult, max_lr=scheduler.learn_rate,
warmup_steps=warmup, min_lr=min_lr, gamma=gamma_rate)
scheduler_beta.last_epoch = embedding.step - 1
else:
scheduler_beta = None
for pg in optimizer.param_groups:
pg['lr'] = scheduler.learn_rate
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
steps_per_epoch = len(ds) // batch_size // gradient_step
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
loss_step = 0
_loss_step = 0 # internal
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
embedding_yet_to_be_embedded = False
is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
img_c = None
pbar = tqdm.tqdm(total=steps - initial_step)
if hasattr(sd_hijack_checkpoint, 'add'):
sd_hijack_checkpoint.add()
try:
for i in range((steps - initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
break
for j, batch in enumerate(dl):
# works as a drop_last=True for gradient accumulation
if j == max_steps_per_epoch:
break
if use_beta_scheduler:
scheduler_beta.step(embedding.step)
else:
scheduler.apply(optimizer, embedding.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
w = batch.weight.to(devices.device, non_blocking=pin_memory)
shared.sd_model.cond_stage_model.to(devices.device)
c = shared.sd_model.cond_stage_model(batch.cond_text)
if is_training_inpainting_model:
if img_c is None:
img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width,
training_height)
cond = {"c_concat": [img_c], "c_crossattn": [c]}
else:
cond = c
if use_weight:
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
del w
else:
loss = shared.sd_model.forward(x, cond)[0] / gradient_step
del x
_loss_step += loss.item()
scaler.scale(loss).backward()
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
gradient_clipping(embedding.vec)
try:
scaler.step(optimizer)
except AssertionError:
raise RuntimeError("This error happens because None of the template used embedding's text!")
scaler.update()
embedding.step += 1
pbar.update()
optimizer.zero_grad(set_to_none=True)
loss_step = _loss_step
_loss_step = 0
steps_done = embedding.step + 1
epoch_num = embedding.step // steps_per_epoch
epoch_step = embedding.step % steps_per_epoch
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step + 1}/{steps_per_epoch}]loss: {loss_step:.7f}")
if embedding_dir is not None and (
(use_beta_scheduler and scheduler_beta.is_EOC(embedding.step) and save_when_converge) or (
save_embedding_every > 0 and steps_done % save_embedding_every == 0)):
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
# if shared.opts.save_optimizer_state:
# embedding.optimizer_state_dict = optimizer.state_dict()
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file,
remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
"loss": f"{loss_step:.7f}",
"learn_rate": scheduler.learn_rate
})
if images_dir is not None and (
(use_beta_scheduler and scheduler_beta.is_EOC(embedding.step) and create_when_converge) or (
create_image_every > 0 and steps_done % create_image_every == 0)):
forced_filename = f'{embedding_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
rng_state = torch.get_rng_state()
cuda_rng_state = None
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state_all()
if move_optimizer:
optim_to(optimizer, devices.cpu)
gc.collect()
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = batch.cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
preview_text = p.prompt
if hasattr(p, 'disable_extra_networks'):
p.disable_extra_networks = True
is_patched = True
else:
is_patched = False
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None
if move_optimizer:
optim_to(optimizer, devices.device)
if image is not None:
if hasattr(shared.state, 'assign_current_image'):
shared.state.assign_current_image(image)
else:
shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
shared.opts.samples_format,
processed.infotexts[0], p=p,
forced_filename=forced_filename,
save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image,
embedding.step)
if save_image_with_stored_embedding and os.path.exists(
last_saved_file) and embedding_yet_to_be_embedded:
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
info = PngImagePlugin.PngInfo()
data = torch.load(last_saved_file)
info.add_text("sd-ti-embedding", embedding_to_b64(data))
title = "<{}>".format(data.get('name', '???'))
try:
vectorSize = list(data['string_to_param'].values())[0].shape[0]
except Exception as e:
vectorSize = '?'
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(
checkpoint.shorthash if hasattr(checkpoint, 'shorthash') else checkpoint.hash)
footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
embedding_yet_to_be_embedded = False
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
torch.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state_all(cuda_rng_state)
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
shared.opts.samples_format,
processed.infotexts[0], p=p,
forced_filename=forced_filename,
save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = embedding.step
shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
finally:
pbar.leave = False
pbar.close()
shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
if hasattr(sd_hijack_checkpoint, 'remove'):
sd_hijack_checkpoint.remove()
return embedding, filename