ramimu's picture
Upload 586 files
1c72248 verified
import glob
import os
import numpy as np
import torch
import torch.nn as nn
from safetensors.torch import load_file, save_file
from toolkit.losses import get_gradient_penalty
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.train_tools import get_torch_dtype
from typing import TYPE_CHECKING, Union
class MeanReduce(nn.Module):
def __init__(self):
super(MeanReduce, self).__init__()
def forward(self, inputs):
return torch.mean(inputs, dim=(1, 2, 3), keepdim=True)
class Vgg19Critic(nn.Module):
def __init__(self):
# vgg19 input (bs, 3, 512, 512)
# pool1 (bs, 64, 256, 256)
# pool2 (bs, 128, 128, 128)
# pool3 (bs, 256, 64, 64)
# pool4 (bs, 512, 32, 32) <- take this input
super(Vgg19Critic, self).__init__()
self.main = nn.Sequential(
# input (bs, 512, 32, 32)
nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2), # (bs, 512, 16, 16)
nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2), # (bs, 512, 8, 8)
nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1),
# (bs, 1, 4, 4)
MeanReduce(), # (bs, 1, 1, 1)
nn.Flatten(), # (bs, 1)
# nn.Flatten(), # (128*8*8) = 8192
# nn.Linear(128 * 8 * 8, 1)
)
def forward(self, inputs):
return self.main(inputs)
if TYPE_CHECKING:
from jobs.process.TrainVAEProcess import TrainVAEProcess
from jobs.process.TrainESRGANProcess import TrainESRGANProcess
class Critic:
process: Union['TrainVAEProcess', 'TrainESRGANProcess']
def __init__(
self,
learning_rate=1e-5,
device='cpu',
optimizer='adam',
num_critic_per_gen=1,
dtype='float32',
lambda_gp=10,
start_step=0,
warmup_steps=1000,
process=None,
optimizer_params=None,
):
self.learning_rate = learning_rate
self.device = device
self.optimizer_type = optimizer
self.num_critic_per_gen = num_critic_per_gen
self.dtype = dtype
self.torch_dtype = get_torch_dtype(self.dtype)
self.process = process
self.model = None
self.optimizer = None
self.scheduler = None
self.warmup_steps = warmup_steps
self.start_step = start_step
self.lambda_gp = lambda_gp
if optimizer_params is None:
optimizer_params = {}
self.optimizer_params = optimizer_params
self.print = self.process.print
print(f" Critic config: {self.__dict__}")
def setup(self):
self.model = Vgg19Critic().to(self.device, dtype=self.torch_dtype)
self.load_weights()
self.model.train()
self.model.requires_grad_(True)
params = self.model.parameters()
self.optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
optimizer_params=self.optimizer_params)
self.scheduler = torch.optim.lr_scheduler.ConstantLR(
self.optimizer,
total_iters=self.process.max_steps * self.num_critic_per_gen,
factor=1,
verbose=False
)
def load_weights(self):
path_to_load = None
self.print(f"Critic: Looking for latest checkpoint in {self.process.save_root}")
files = glob.glob(os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}*.safetensors"))
if files and len(files) > 0:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
else:
self.print(f" - No checkpoint found, starting from scratch")
if path_to_load:
self.model.load_state_dict(load_file(path_to_load))
def save(self, step=None):
self.process.update_training_metadata()
save_meta = get_meta_for_safetensors(self.process.meta, self.process.job.name)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
save_path = os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}{step_num}.safetensors")
save_file(self.model.state_dict(), save_path, save_meta)
self.print(f"Saved critic to {save_path}")
def get_critic_loss(self, vgg_output):
if self.start_step > self.process.step_num:
return torch.tensor(0.0, dtype=self.torch_dtype, device=self.device)
warmup_scaler = 1.0
# we need a warmup when we come on of 1000 steps
# we want to scale the loss by 0.0 at self.start_step steps and 1.0 at self.start_step + warmup_steps
if self.process.step_num < self.start_step + self.warmup_steps:
warmup_scaler = (self.process.step_num - self.start_step) / self.warmup_steps
# set model to not train for generator loss
self.model.eval()
self.model.requires_grad_(False)
vgg_pred, vgg_target = torch.chunk(vgg_output, 2, dim=0)
# run model
stacked_output = self.model(vgg_pred)
return (-torch.mean(stacked_output)) * warmup_scaler
def step(self, vgg_output):
# train critic here
self.model.train()
self.model.requires_grad_(True)
self.optimizer.zero_grad()
critic_losses = []
inputs = vgg_output.detach()
inputs = inputs.to(self.device, dtype=self.torch_dtype)
self.optimizer.zero_grad()
vgg_pred, vgg_target = torch.chunk(inputs, 2, dim=0)
stacked_output = self.model(inputs).float()
out_pred, out_target = torch.chunk(stacked_output, 2, dim=0)
# Compute gradient penalty
gradient_penalty = get_gradient_penalty(self.model, vgg_target, vgg_pred, self.device)
# Compute WGAN-GP critic loss
critic_loss = -(torch.mean(out_target) - torch.mean(out_pred)) + self.lambda_gp * gradient_penalty
critic_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.scheduler.step()
critic_losses.append(critic_loss.item())
# avg loss
loss = np.mean(critic_losses)
return loss
def get_lr(self):
if self.optimizer_type.startswith('dadaptation'):
learning_rate = (
self.optimizer.param_groups[0]["d"] *
self.optimizer.param_groups[0]["lr"]
)
else:
learning_rate = self.optimizer.param_groups[0]['lr']
return learning_rate