Spaces:
No application file
No application file
--- | |
title: 'π evaluate' | |
--- | |
`evaluate()` method is used to evaluate the performance of a RAG app. You can find the signature below: | |
### Parameters | |
<ParamField path="question" type="Union[str, list[str]]"> | |
A question or a list of questions to evaluate your app on. | |
</ParamField> | |
<ParamField path="metrics" type="Optional[list[Union[BaseMetric, str]]]" optional> | |
The metrics to evaluate your app on. Defaults to all metrics: `["context_relevancy", "answer_relevancy", "groundedness"]` | |
</ParamField> | |
<ParamField path="num_workers" type="int" optional> | |
Specify the number of threads to use for parallel processing. | |
</ParamField> | |
### Returns | |
<ResponseField name="metrics" type="dict"> | |
Returns the metrics you have chosen to evaluate your app on as a dictionary. | |
</ResponseField> | |
## Usage | |
```python | |
from embedchain import App | |
app = App() | |
# add data source | |
app.add("https://www.forbes.com/profile/elon-musk") | |
# run evaluation | |
app.evaluate("what is the net worth of Elon Musk?") | |
# {'answer_relevancy': 0.958019958036268, 'context_relevancy': 0.12903225806451613} | |
# or | |
# app.evaluate(["what is the net worth of Elon Musk?", "which companies does Elon Musk own?"]) | |
``` | |