eraV2s13_raj / lightningmodel.py
raja5259's picture
upload 14 files
04966a9 verified
raw
history blame
8.88 kB
import os
import math
import numpy as np
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from IPython.core.display import display
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torch.optim.swa_utils import AveragedModel, update_bn
from torchmetrics.functional import accuracy
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision import datasets, transforms, utils
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
seed_everything(7)
class Net_S13(nn.Module):
#class ResNet(nn.Module):
def __init__(self):
super(Net_S13, self).__init__()
#super(ResNet, self).__init__()
# Control Variable
self.printShape = False
#Common :-
set1 = 64 #prepLayer
set2 = 128 #Layer2
set3 = 256 #Layer3
set4 = 512 #Layer4
avg = 1024 #channels
drop = 0.1 #dropout
S = 1 #stride
K = 3 #kernel_size
# PrepLayer - Conv 3x3 s1, p1) >> BN >> RELU [64k]
I = 3
O = set1
P = 1 #padding
self.prepLayer = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# Layer1 -
# X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [128k]
# R1 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [128k]
# Add(X, R1)
I = O
O = set2
P = 1 #padding
self.Layer1 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer1Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer1Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# Layer 2 -
# Conv 3x3 [256k]
# MaxPooling2D
# BN
# ReLU
I = O
O = set3
P = 1 #padding
self.Layer2 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# Layer 3 -
# X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [512k]
# R2 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [512k]
# Add(X, R2)
I = O
O = set4
P = 1 #padding
self.Layer3 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer2Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer2Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# MaxPooling with Kernel Size 4
self.pool = nn.MaxPool2d(kernel_size = 4, stride = 4)
# FC Layer
I = 512
O = 10
self.lastLayer = nn.Linear(I, O)
self.aGAP = nn.AdaptiveAvgPool2d((1, 1))
self.flat = nn.Flatten(1, -1)
self.gap = nn.AvgPool2d(avg)
self.drop = nn.Dropout(drop)
# convolution Block
def convBlock(self, in_channels, out_channels, kernel_size, stride, padding, last_layer = False, bias = False):
if(False == last_layer):
return nn.Sequential(
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias),
nn.BatchNorm2d(out_channels),
nn.ReLU())
else:
return nn.Sequential(
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias))
# convolution-MP Block
def convMPBlock(self, in_channels, out_channels, kernel_size, stride, padding, bias = False):
return nn.Sequential(
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.BatchNorm2d(out_channels),
nn.ReLU())
def printf(self, n, x, string1=""):
if(self.printShape):
print(f"{n} " f"{x.shape = }" f" {string1}") ## Comment / Uncomment this line towards the no need of print or needed print
pass
def printEmpty(self,):
if(self.printShape):
print("") ## Comment / Uncomment this line towards the no need of print or needed print
pass
def forward(self, x):
self.printf(0.0, x, "prepLayer input")
x = self.prepLayer(x)
x = self.drop(x)
self.printf(0.1, x, "prepLayer output")
self.printEmpty()
self.printf(1.0, x, "Layer1 input")
x = self.Layer1(x)
self.printf(1.1, x, "Layer1 output --> sacroscant")
y = x #sacrosanct path1
self.printf(1.2, x, "Layer1 resnet input")
x = self.resNetLayer1Part1(x) #residual path1
x = self.drop(x)
x = self.resNetLayer1Part2(x) #residual path1
self.printf(1.3, x, "Layer1 resnet output")
x = x + y #adding sacrosanct path1 and residual path1
x = self.drop(x)
self.printf(1.4, x, "res+sacrosanct output")
self.printEmpty()
self.printf(2.0, x, "Layer2 input")
x = self.Layer2(x)
x = self.drop(x)
self.printf(2.1, x, "Layer2 output")
self.printEmpty()
self.printf(3.0, x, "Layer3 input")
x = self.Layer3(x)
self.printf(3.1, x, "Layer3 output --> sacroscant")
y = x #sacrosanct path2
self.printf(3.2, x, "Layer3 resnet input")
x = self.resNetLayer2Part1(x) #residual path2
x = self.drop(x)
x = self.resNetLayer2Part2(x) #residual path2
self.printf(3.3, x, "Layer3 resnet output")
x = x + y #adding sacrosanct path2 and residual path2
x = self.drop(x)
self.printf(3.4, x, "res+sacrosanct output")
self.printEmpty()
self.printf(4.0, x, "pool input")
x = self.pool(x)
self.printf(4.1, x, "pool output")
self.printEmpty()
# x = x.view(-1, 10)
self.printf(4.2, x, "For showing before last layer")
x = x.view(x.size(0), -1)
self.printf(5.0, x, "last layer input") #512, 1, 1
x = self.lastLayer(x)
# x = self.gap(x)
self.printf(5.1, x, "last layer output") #10, 1, 1
self.printEmpty()
# self.printf(7.0, x)
return F.log_softmax(x)
def create_model():
model = Net_S13()
return model
class LitResnet(LightningModule):
def __init__(self, lr=0.05):
super().__init__()
self.save_hyperparameters()
self.model = create_model()
def forward(self, x):
out = self.model(x)
return F.log_softmax(out, dim=1)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
self.log("train_loss", loss)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y, task='MULTICLASS', num_classes=10)
if stage:
self.log(f"{stage}_loss", loss, prog_bar=True)
self.log(f"{stage}_acc", acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, "val")
def test_step(self, batch, batch_idx):
self.evaluate(batch, "test")
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.hparams.lr,
momentum=0.9,
weight_decay=5e-4,
)
steps_per_epoch = 45000 // BATCH_SIZE
scheduler_dict = {
"scheduler": OneCycleLR(
optimizer,
0.1,
epochs=self.trainer.max_epochs,
steps_per_epoch=steps_per_epoch,
),
"interval": "step",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}