infinitetalk / wan /multitalk.py
rahul7star's picture
Migrated from GitHub
fc6bdf0 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
from inspect import ArgSpec
import logging
import json
import math
import importlib
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
from PIL import Image
import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
from diffusers.models.modeling_utils import no_init_weights, ContextManagers
import accelerate
from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel
from .modules.multitalk_model import WanModel, WanLayerNorm, WanRMSNorm
from .modules.t5 import T5EncoderModel, T5LayerNorm, T5RelativeEmbedding
from .modules.vae import WanVAE, CausalConv3d, RMS_norm, Upsample
from .utils.multitalk_utils import MomentumBuffer, adaptive_projected_guidance, match_and_blend_colors
from src.vram_management import AutoWrappedQLinear, AutoWrappedLinear, AutoWrappedModule, enable_vram_management
from wan.utils.utils import convert_video_to_h264, extract_specific_frames, get_video_codec
from wan.wan_lora import WanLoraWrapper
from safetensors.torch import load_file
from optimum.quanto import quantize, freeze, qint8,requantize
import optimum.quanto.nn.qlinear as qlinear
def torch_gc():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def to_param_dtype_fp32only(model, param_dtype):
for module in model.modules():
for name, param in module.named_parameters(recurse=False):
if param.dtype == torch.float32 and param.__class__.__name__ not in ['WeightQBytesTensor']:
param.data = param.data.to(param_dtype)
for name, buf in module.named_buffers(recurse=False):
if buf.dtype == torch.float32 and buf.__class__.__name__ not in ['WeightQBytesTensor']:
module._buffers[name] = buf.to(param_dtype)
def resize_and_centercrop(cond_image, target_size):
"""
Resize image or tensor to the target size without padding.
"""
# Get the original size
if isinstance(cond_image, torch.Tensor):
_, orig_h, orig_w = cond_image.shape
else:
orig_h, orig_w = cond_image.height, cond_image.width
target_h, target_w = target_size
# Calculate the scaling factor for resizing
scale_h = target_h / orig_h
scale_w = target_w / orig_w
# Compute the final size
scale = max(scale_h, scale_w)
final_h = math.ceil(scale * orig_h)
final_w = math.ceil(scale * orig_w)
# Resize
if isinstance(cond_image, torch.Tensor):
if len(cond_image.shape) == 3:
cond_image = cond_image[None]
resized_tensor = nn.functional.interpolate(cond_image, size=(final_h, final_w), mode='nearest').contiguous()
# crop
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor.squeeze(0)
else:
resized_image = cond_image.resize((final_w, final_h), resample=Image.BILINEAR)
resized_image = np.array(resized_image)
# tensor and crop
resized_tensor = torch.from_numpy(resized_image)[None, ...].permute(0, 3, 1, 2).contiguous()
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor[:, :, None, :, :]
return cropped_tensor
def timestep_transform(
t,
shift=5.0,
num_timesteps=1000,
):
t = t / num_timesteps
# shift the timestep based on ratio
new_t = shift * t / (1 + (shift - 1) * t)
new_t = new_t * num_timesteps
return new_t
class InfiniteTalkPipeline:
def __init__(
self,
config,
checkpoint_dir,
quant_dir=None,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
t5_cpu=False,
init_on_cpu=True,
num_timesteps=1000,
use_timestep_transform=True,
lora_dir=None,
lora_scales=None,
quant = None,
dit_path = None,
infinitetalk_dir=None,
):
r"""
Initializes the image-to-video generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_usp (`bool`, *optional*, defaults to False):
Enable distribution strategy of USP.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
quant (`str`, *optional*, defaults to None):
Quantization type, must be 'int8' or 'fp8'.
"""
if quant is not None and quant not in ("int8", "fp8"):
raise ValueError("quant must be 'int8', 'fp8', or None(default fp32 model)")
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.use_usp = use_usp
self.t5_cpu = t5_cpu
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None,
quant=quant,
quant_dir=os.path.dirname(quant_dir) if quant_dir is not None else None,
)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
self.clip = CLIPModel(
dtype=config.clip_dtype,
device=self.device,
checkpoint_path=os.path.join(checkpoint_dir,
config.clip_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
logging.info(f"Creating WanModel from {checkpoint_dir}")
if quant is not None:
logging.info(f"Loading Quantized MultiTalk from {quant_dir}")
with torch.device('meta'):
wan_config = json.load(open(os.path.join(checkpoint_dir, "config.json")))
self.model = WanModel(weight_init=False,**wan_config)
torch_gc()
model_state_dict = load_file(quant_dir)
map_json_path = os.path.join(quant_dir.replace('safetensors', 'json'))
self.model.init_freqs()
with open(map_json_path, "r") as f:
quantization_map = json.load(f)
requantize(self.model, model_state_dict, quantization_map, device='cpu')
else:
if dit_path is None:
init_contexts = [no_init_weights()]
init_contexts.append(accelerate.init_empty_weights())
wan_config = json.load(open(os.path.join(checkpoint_dir, "config.json")))
self.model = WanModel(weight_init=False,**wan_config).to(dtype=self.param_dtype)
weight_files = [f"{checkpoint_dir}/diffusion_pytorch_model-00001-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00002-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00003-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00004-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00005-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00006-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00007-of-00007.safetensors",
f"{infinitetalk_dir}"]
merged_state_dict = {}
for weight_file in weight_files:
sd = load_file(weight_file)
merged_state_dict.update(sd)
self.model.load_state_dict(merged_state_dict)
else:
init_contexts = [no_init_weights()]
init_contexts.append(accelerate.init_empty_weights())
with ContextManagers(init_contexts):
wan_config = json.load(open(os.path.join(checkpoint_dir, "config.json")))
self.model = WanModel(weight_init=False,**wan_config)
checkpoint_weights = torch.load(dit_path, map_location='cpu')
self.model.load_state_dict(checkpoint_weights['state_dict'])
logging.info(f"loading infinitetalk weights {checkpoint_dir}")
self.model.eval().requires_grad_(False)
to_param_dtype_fp32only(self.model, self.param_dtype)
if lora_dir is not None and quant is None :
lora_wrapper = WanLoraWrapper(self.model)
for lora_path, lora_scale in zip(lora_dir, lora_scales):
lora_name = lora_wrapper.load_lora(lora_path)
lora_wrapper.apply_lora(lora_name, lora_scale, param_dtype=self.param_dtype, device=self.device)
if t5_fsdp or dit_fsdp or use_usp:
init_on_cpu = False
if use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (
usp_dit_forward_multitalk,
usp_attn_forward_multitalk,
usp_crossattn_multi_forward_multitalk
)
for block in self.model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward_multitalk, block.self_attn)
block.audio_cross_attn.forward = types.MethodType(
usp_crossattn_multi_forward_multitalk, block.audio_cross_attn)
self.model.forward = types.MethodType(usp_dit_forward_multitalk, self.model)
self.sp_size = get_sequence_parallel_world_size()
else:
self.sp_size = 1
if dist.is_initialized():
dist.barrier()
if dit_fsdp:
self.model = shard_fn(self.model)
else:
if not init_on_cpu:
self.model.to(self.device)
self.sample_neg_prompt = config.sample_neg_prompt
self.num_timesteps = num_timesteps
self.use_timestep_transform = use_timestep_transform
self.cpu_offload = False
self.model_names = ["model"]
self.vram_management = False
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
"""
compatible with diffusers add_noise()
"""
timesteps = timesteps.float() / self.num_timesteps
timesteps = timesteps.view(timesteps.shape + (1,) * (len(noise.shape)-1))
return (1 - timesteps) * original_samples + timesteps * noise
def enable_vram_management(self, num_persistent_param_in_dit=None):
dtype = next(iter(self.model.parameters())).dtype
enable_vram_management(
self.model,
module_map={
qlinear.QLinear: AutoWrappedQLinear,
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
WanLayerNorm: AutoWrappedModule,
WanRMSNorm: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.param_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.param_dtype,
computation_device=self.device,
),
)
self.enable_cpu_offload()
def enable_cpu_offload(self):
self.cpu_offload = True
def load_models_to_device(self, loadmodel_names=[]):
# only load models to device if cpu_offload is enabled
if not self.cpu_offload:
return
# offload the unneeded models to cpu
for model_name in self.model_names:
if model_name not in loadmodel_names:
model = getattr(self, model_name)
if not isinstance(model, nn.Module):
model = model.model
if model is not None:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "offload"):
module.offload()
else:
model.cpu()
# load the needed models to device
for model_name in loadmodel_names:
model = getattr(self, model_name)
if not isinstance(model, nn.Module):
model = model.model
if model is not None:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "onload"):
module.onload()
else:
model.to(self.device)
# fresh the cuda cache
torch.cuda.empty_cache()
def generate_infinitetalk(self,
input_data,
size_buckget='infinitetalk-480',
motion_frame=25,
frame_num=81,
shift=5.0,
sampling_steps=40,
text_guide_scale=5.0,
audio_guide_scale=4.0,
n_prompt="",
seed=-1,
offload_model=True,
max_frames_num=1000,
face_scale=0.05,
progress=True,
color_correction_strength=0.0,
extra_args=None):
r"""
Generates video frames from input image and text prompt using diffusion process.
Args:
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
"""
# init teacache
if extra_args.use_teacache:
self.model.teacache_init(
sample_steps=sampling_steps,
teacache_thresh=extra_args.teacache_thresh,
model_scale=extra_args.size,
)
else:
self.model.disable_teacache()
input_prompt = input_data['prompt']
cond_file_path = input_data['cond_video']
codec = get_video_codec(cond_file_path)
if codec == 'av1':
output_video_path = 'tmp/' + '_input_h264.mp4'
print(f"Converting {cond_file_path} from AV1 to H.264...")
convert_video_to_h264(cond_file_path, output_video_path)
print(f"Conversion complete! Saved as {output_video_path}")
cond_file_path = output_video_path
else:
print("No conversion needed.")
cond_image = extract_specific_frames(cond_file_path, 0)
# cond_image = Image.fromarray(cond_image)
# decide a proper size
bucket_config_module = importlib.import_module("wan.utils.multitalk_utils")
if size_buckget == 'infinitetalk-480':
bucket_config = getattr(bucket_config_module, 'ASPECT_RATIO_627')
elif size_buckget == 'infinitetalk-720':
bucket_config = getattr(bucket_config_module, 'ASPECT_RATIO_960')
src_h, src_w = cond_image.height, cond_image.width
ratio = src_h / src_w
closest_bucket = sorted(list(bucket_config.keys()), key=lambda x: abs(float(x)-ratio))[0]
target_h, target_w = bucket_config[closest_bucket][0]
cond_image = resize_and_centercrop(cond_image, (target_h, target_w))
cond_image = cond_image / 255
cond_image = (cond_image - 0.5) * 2 # normalization
cond_image = cond_image.to(self.device) # 1 C 1 H W
# Store the original image for color reference if strength > 0
original_color_reference = None
if color_correction_strength > 0.0:
original_color_reference = cond_image.clone()
# read audio embeddings
audio_embedding_path_1 = input_data['cond_audio']['person1']
if len(input_data['cond_audio']) == 1:
HUMAN_NUMBER = 1
audio_embedding_path_2 = None
else:
HUMAN_NUMBER = 2
audio_embedding_path_2 = input_data['cond_audio']['person2']
full_audio_embs = []
audio_embedding_paths = [audio_embedding_path_1, audio_embedding_path_2]
for human_idx in range(HUMAN_NUMBER):
audio_embedding_path = audio_embedding_paths[human_idx]
if not os.path.exists(audio_embedding_path):
continue
full_audio_emb = torch.load(audio_embedding_path)
if torch.isnan(full_audio_emb).any():
continue
if full_audio_emb.shape[0] <= frame_num:
continue
full_audio_embs.append(full_audio_emb)
assert len(full_audio_embs) == HUMAN_NUMBER, f"Aduio file not exists or length not satisfies frame nums."
# preprocess text embedding
if n_prompt == "":
n_prompt = self.sample_neg_prompt
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context, context_null = self.text_encoder([input_prompt, n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
torch_gc()
# prepare params for video generation
indices = (torch.arange(2 * 2 + 1) - 2) * 1
clip_length = frame_num
is_first_clip = True
arrive_last_frame = False
cur_motion_frames_num = 1
audio_start_idx = 0
audio_end_idx = audio_start_idx + clip_length
gen_video_list = []
torch_gc()
# set random seed and init noise
seed = seed if seed >= 0 else random.randint(0, 99999999)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# start video generation iteratively
while True:
audio_embs = []
# split audio with window size
for human_idx in range(HUMAN_NUMBER):
center_indices = torch.arange(
audio_start_idx,
audio_end_idx,
1,
).unsqueeze(
1
) + indices.unsqueeze(0)
center_indices = torch.clamp(center_indices, min=0, max=full_audio_embs[human_idx].shape[0]-1)
audio_emb = full_audio_embs[human_idx][center_indices][None,...].to(self.device)
audio_embs.append(audio_emb)
audio_embs = torch.concat(audio_embs, dim=0).to(self.param_dtype)
torch_gc()
h, w = cond_image.shape[-2], cond_image.shape[-1]
lat_h, lat_w = h // self.vae_stride[1], w // self.vae_stride[2]
max_seq_len = ((frame_num - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
self.patch_size[1] * self.patch_size[2])
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
noise = torch.randn(
16, (frame_num - 1) // 4 + 1,
lat_h,
lat_w,
dtype=torch.float32,
device=self.device)
# get mask
msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device)
msk[:, 1:] = 0
msk = torch.concat([
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
],
dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
msk = msk.transpose(1, 2).to(self.param_dtype) # B 4 T H W
with torch.no_grad():
# get clip embedding
self.clip.model.to(self.device)
clip_context = self.clip.visual(cond_image[:, :, -1:, :, :]).to(self.param_dtype)
if offload_model:
self.clip.model.cpu()
torch_gc()
# zero padding and vae encode
video_frames = torch.zeros(1, cond_image.shape[1], frame_num-cond_image.shape[2], target_h, target_w).to(self.device)
padding_frames_pixels_values = torch.concat([cond_image, video_frames], dim=2)
y = self.vae.encode(padding_frames_pixels_values)
y = torch.stack(y).to(self.param_dtype) # B C T H W
cur_motion_frames_latent_num = int(1 + (cur_motion_frames_num-1) // 4)
if is_first_clip:
latent_motion_frames = self.vae.encode(cond_image)[0]
else:
latent_motion_frames = self.vae.encode(cond_frame)[0]
y = torch.concat([msk, y], dim=1) # B 4+C T H W
torch_gc()
# construct human mask
human_masks = []
if HUMAN_NUMBER==1:
background_mask = torch.ones([src_h, src_w])
human_mask1 = torch.ones([src_h, src_w])
human_mask2 = torch.ones([src_h, src_w])
human_masks = [human_mask1, human_mask2, background_mask]
elif HUMAN_NUMBER==2:
if 'bbox' in input_data:
assert len(input_data['bbox']) == len(input_data['cond_audio']), f"The number of target bbox should be the same with cond_audio"
background_mask = torch.zeros([src_h, src_w])
for _, person_bbox in input_data['bbox'].items():
x_min, y_min, x_max, y_max = person_bbox
human_mask = torch.zeros([src_h, src_w])
human_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
background_mask += human_mask
human_masks.append(human_mask)
else:
x_min, x_max = int(src_h * face_scale), int(src_h * (1 - face_scale))
background_mask = torch.zeros([src_h, src_w])
background_mask = torch.zeros([src_h, src_w])
human_mask1 = torch.zeros([src_h, src_w])
human_mask2 = torch.zeros([src_h, src_w])
lefty_min, lefty_max = int((src_w//2) * face_scale), int((src_w//2) * (1 - face_scale))
righty_min, righty_max = int((src_w//2) * face_scale + (src_w//2)), int((src_w//2) * (1 - face_scale) + (src_w//2))
human_mask1[x_min:x_max, lefty_min:lefty_max] = 1
human_mask2[x_min:x_max, righty_min:righty_max] = 1
background_mask += human_mask1
background_mask += human_mask2
human_masks = [human_mask1, human_mask2]
background_mask = torch.where(background_mask > 0, torch.tensor(0), torch.tensor(1))
human_masks.append(background_mask)
ref_target_masks = torch.stack(human_masks, dim=0).to(self.device)
# resize and centercrop for ref_target_masks
ref_target_masks = resize_and_centercrop(ref_target_masks, (target_h, target_w))
_, _, _,lat_h, lat_w = y.shape
ref_target_masks = F.interpolate(ref_target_masks.unsqueeze(0), size=(lat_h, lat_w), mode='nearest').squeeze()
ref_target_masks = (ref_target_masks > 0)
ref_target_masks = ref_target_masks.float().to(self.device)
torch_gc()
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# evaluation mode
with torch.no_grad(), no_sync():
# prepare timesteps
timesteps = list(np.linspace(self.num_timesteps, 1, sampling_steps, dtype=np.float32))
timesteps.append(0.)
timesteps = [torch.tensor([t], device=self.device) for t in timesteps]
if self.use_timestep_transform:
timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps]
# sample videos
latent = noise
# prepare condition and uncondition configs
arg_c = {
'context': [context],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': audio_embs,
'ref_target_masks': ref_target_masks
}
arg_null_text = {
'context': [context_null],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': audio_embs,
'ref_target_masks': ref_target_masks
}
arg_null_audio = {
'context': [context],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': torch.zeros_like(audio_embs)[-1:],
'ref_target_masks': ref_target_masks
}
arg_null = {
'context': [context_null],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': torch.zeros_like(audio_embs)[-1:],
'ref_target_masks': ref_target_masks
}
torch_gc()
if not self.vram_management:
self.model.to(self.device)
else:
self.load_models_to_device(["model"])
# injecting motion frames
if not is_first_clip:
latent_motion_frames = latent_motion_frames.to(latent.dtype).to(self.device)
motion_add_noise = torch.randn_like(latent_motion_frames).contiguous()
add_latent = self.add_noise(latent_motion_frames, motion_add_noise, timesteps[0])
_, T_m, _, _ = add_latent.shape
latent[:, :T_m] = add_latent
# infer with APG
# refer https://arxiv.org/abs/2410.02416
if extra_args.use_apg:
text_momentumbuffer = MomentumBuffer(extra_args.apg_momentum)
audio_momentumbuffer = MomentumBuffer(extra_args.apg_momentum)
progress_wrap = partial(tqdm, total=len(timesteps)-1) if progress else (lambda x: x)
for i in progress_wrap(range(len(timesteps)-1)):
timestep = timesteps[i]
latent[:, :cur_motion_frames_latent_num] = latent_motion_frames
latent_model_input = [latent.to(self.device)]
# inference with CFG strategy
noise_pred_cond = self.model(
latent_model_input, t=timestep, **arg_c)[0]
torch_gc()
if math.isclose(text_guide_scale, 1.0):
noise_pred_drop_audio = self.model(
latent_model_input, t=timestep, **arg_null_audio)[0]
torch_gc()
else:
noise_pred_drop_text = self.model(
latent_model_input, t=timestep, **arg_null_text)[0]
torch_gc()
noise_pred_uncond = self.model(
latent_model_input, t=timestep, **arg_null)[0]
torch_gc()
if extra_args.use_apg:
# correct update direction
if math.isclose(text_guide_scale, 1.0):
diff_uncond_audio = noise_pred_cond - noise_pred_drop_audio
noise_pred = noise_pred_cond + (audio_guide_scale - 1)* adaptive_projected_guidance(diff_uncond_audio,
noise_pred_cond,
momentum_buffer=audio_momentumbuffer,
norm_threshold=extra_args.apg_norm_threshold)
else:
diff_uncond_text = noise_pred_cond - noise_pred_drop_text
diff_uncond_audio = noise_pred_drop_text - noise_pred_uncond
noise_pred = noise_pred_cond + (text_guide_scale - 1) * adaptive_projected_guidance(diff_uncond_text,
noise_pred_cond,
momentum_buffer=text_momentumbuffer,
norm_threshold=extra_args.apg_norm_threshold) \
+ (audio_guide_scale - 1) * adaptive_projected_guidance(diff_uncond_audio,
noise_pred_cond,
momentum_buffer=audio_momentumbuffer,
norm_threshold=extra_args.apg_norm_threshold)
else:
# vanilla CFG strategy
if math.isclose(text_guide_scale, 1.0):
noise_pred = noise_pred_drop_audio + audio_guide_scale* (noise_pred_cond - noise_pred_drop_audio)
else:
noise_pred = noise_pred_uncond + text_guide_scale * (
noise_pred_cond - noise_pred_drop_text) + \
audio_guide_scale * (noise_pred_drop_text - noise_pred_uncond)
noise_pred = -noise_pred
# update latent
dt = timesteps[i] - timesteps[i + 1]
dt = dt / self.num_timesteps
latent = latent + noise_pred * dt[:, None, None, None]
# injecting motion frames
if not is_first_clip:
latent_motion_frames = latent_motion_frames.to(latent.dtype).to(self.device)
motion_add_noise = torch.randn_like(latent_motion_frames).contiguous()
add_latent = self.add_noise(latent_motion_frames, motion_add_noise, timesteps[i+1])
_, T_m, _, _ = add_latent.shape
latent[:, :T_m] = add_latent
latent[:, :cur_motion_frames_latent_num] = latent_motion_frames
x0 = [latent.to(self.device)]
del latent_model_input, timestep
if offload_model:
if not self.vram_management:
self.model.cpu()
torch_gc()
videos = self.vae.decode(x0)
# cache generated samples
videos = torch.stack(videos).cpu() # B C T H W
# >>> START OF COLOR CORRECTION STEP <<<
if color_correction_strength > 0.0 and original_color_reference is not None:
videos = match_and_blend_colors(videos, original_color_reference, color_correction_strength)
# >>> END OF COLOR CORRECTION STEP <<<
if is_first_clip:
gen_video_list.append(videos)
else:
gen_video_list.append(videos[:, :, cur_motion_frames_num:])
# decide whether is done
if arrive_last_frame: break
# update next condition frames
is_first_clip = False
cur_motion_frames_num = motion_frame
cond_frame = videos[:, :, -cur_motion_frames_num:].to(torch.float32).to(self.device)
audio_start_idx += (frame_num - cur_motion_frames_num)
audio_end_idx = audio_start_idx + clip_length
cond_image = extract_specific_frames(cond_file_path, audio_start_idx)
# cond_image = Image.fromarray(cond_image)
cond_image = resize_and_centercrop(cond_image, (target_h, target_w))
cond_image = cond_image / 255
cond_image = (cond_image - 0.5) * 2 # normalization
cond_image = cond_image.to(self.device) # 1 C 1 H W
# Repeat audio emb
if audio_end_idx >= min(max_frames_num, len(full_audio_embs[0])):
arrive_last_frame = True
miss_lengths = []
source_frames = []
for human_inx in range(HUMAN_NUMBER):
source_frame = len(full_audio_embs[human_inx])
source_frames.append(source_frame)
if audio_end_idx >= len(full_audio_embs[human_inx]):
miss_length = audio_end_idx - len(full_audio_embs[human_inx]) + 3
add_audio_emb = torch.flip(full_audio_embs[human_inx][-1*miss_length:], dims=[0])
full_audio_embs[human_inx] = torch.cat([full_audio_embs[human_inx], add_audio_emb], dim=0)
miss_lengths.append(miss_length)
else:
miss_lengths.append(0)
if max_frames_num <= frame_num: break
torch_gc()
if offload_model:
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
gen_video_samples = torch.cat(gen_video_list, dim=2)[:, :, :int(max_frames_num)]
gen_video_samples = gen_video_samples.to(torch.float32)
if max_frames_num > frame_num and sum(miss_lengths) > 0:
# split video frames
# gen_video_samples = gen_video_samples[:, :, :-1*miss_lengths[0]]
gen_video_samples = gen_video_samples[:, :, :full_audio_emb.shape[0]]
if dist.is_initialized():
dist.barrier()
del noise, latent
torch_gc()
return gen_video_samples[0] if self.rank == 0 else None