Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import argparse | |
| import binascii | |
| import os | |
| import os.path as osp | |
| import imageio | |
| import torch | |
| import torchvision | |
| __all__ = ['cache_video', 'cache_image', 'str2bool'] | |
| def rand_name(length=8, suffix=''): | |
| name = binascii.b2a_hex(os.urandom(length)).decode('utf-8') | |
| if suffix: | |
| if not suffix.startswith('.'): | |
| suffix = '.' + suffix | |
| name += suffix | |
| return name | |
| def cache_video(tensor, | |
| save_file=None, | |
| fps=30, | |
| suffix='.mp4', | |
| nrow=8, | |
| normalize=True, | |
| value_range=(-1, 1), | |
| retry=5): | |
| # cache file | |
| cache_file = osp.join('/tmp', rand_name( | |
| suffix=suffix)) if save_file is None else save_file | |
| # save to cache | |
| error = None | |
| for _ in range(retry): | |
| try: | |
| # preprocess | |
| tensor = tensor.clamp(min(value_range), max(value_range)) | |
| tensor = torch.stack([ | |
| torchvision.utils.make_grid( | |
| u, nrow=nrow, normalize=normalize, value_range=value_range) | |
| for u in tensor.unbind(2) | |
| ], | |
| dim=1).permute(1, 2, 3, 0) | |
| tensor = (tensor * 255).type(torch.uint8).cpu() | |
| # write video | |
| writer = imageio.get_writer( | |
| cache_file, fps=fps, codec='libx264', quality=8) | |
| for frame in tensor.numpy(): | |
| writer.append_data(frame) | |
| writer.close() | |
| return cache_file | |
| except Exception as e: | |
| error = e | |
| continue | |
| else: | |
| print(f'cache_video failed, error: {error}', flush=True) | |
| return None | |
| def cache_image(tensor, | |
| save_file, | |
| nrow=8, | |
| normalize=True, | |
| value_range=(-1, 1), | |
| retry=5): | |
| # cache file | |
| suffix = osp.splitext(save_file)[1] | |
| if suffix.lower() not in [ | |
| '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp' | |
| ]: | |
| suffix = '.png' | |
| # save to cache | |
| error = None | |
| for _ in range(retry): | |
| try: | |
| tensor = tensor.clamp(min(value_range), max(value_range)) | |
| torchvision.utils.save_image( | |
| tensor, | |
| save_file, | |
| nrow=nrow, | |
| normalize=normalize, | |
| value_range=value_range) | |
| return save_file | |
| except Exception as e: | |
| error = e | |
| continue | |
| def str2bool(v): | |
| """ | |
| Convert a string to a boolean. | |
| Supported true values: 'yes', 'true', 't', 'y', '1' | |
| Supported false values: 'no', 'false', 'f', 'n', '0' | |
| Args: | |
| v (str): String to convert. | |
| Returns: | |
| bool: Converted boolean value. | |
| Raises: | |
| argparse.ArgumentTypeError: If the value cannot be converted to boolean. | |
| """ | |
| if isinstance(v, bool): | |
| return v | |
| v_lower = v.lower() | |
| if v_lower in ('yes', 'true', 't', 'y', '1'): | |
| return True | |
| elif v_lower in ('no', 'false', 'f', 'n', '0'): | |
| return False | |
| else: | |
| raise argparse.ArgumentTypeError('Boolean value expected (True/False)') | |

