Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import gc | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import types | |
from contextlib import contextmanager | |
from functools import partial | |
import torch | |
import torch.cuda.amp as amp | |
import torch.distributed as dist | |
from tqdm import tqdm | |
from .distributed.fsdp import shard_model | |
from .modules.model import WanModel | |
from .modules.t5 import T5EncoderModel | |
from .modules.vae import WanVAE | |
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
get_sampling_sigmas, retrieve_timesteps) | |
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
class WanT2V: | |
def __init__( | |
self, | |
config, | |
checkpoint_dir, | |
device_id=0, | |
rank=0, | |
t5_fsdp=False, | |
dit_fsdp=False, | |
use_usp=False, | |
t5_cpu=False, | |
): | |
r""" | |
Initializes the Wan text-to-video generation model components. | |
Args: | |
config (EasyDict): | |
Object containing model parameters initialized from config.py | |
checkpoint_dir (`str`): | |
Path to directory containing model checkpoints | |
device_id (`int`, *optional*, defaults to 0): | |
Id of target GPU device | |
rank (`int`, *optional*, defaults to 0): | |
Process rank for distributed training | |
t5_fsdp (`bool`, *optional*, defaults to False): | |
Enable FSDP sharding for T5 model | |
dit_fsdp (`bool`, *optional*, defaults to False): | |
Enable FSDP sharding for DiT model | |
use_usp (`bool`, *optional*, defaults to False): | |
Enable distribution strategy of USP. | |
t5_cpu (`bool`, *optional*, defaults to False): | |
Whether to place T5 model on CPU. Only works without t5_fsdp. | |
""" | |
self.device = torch.device(f"cuda:{device_id}") | |
self.config = config | |
self.rank = rank | |
self.t5_cpu = t5_cpu | |
self.num_train_timesteps = config.num_train_timesteps | |
self.param_dtype = config.param_dtype | |
shard_fn = partial(shard_model, device_id=device_id) | |
self.text_encoder = T5EncoderModel( | |
text_len=config.text_len, | |
dtype=config.t5_dtype, | |
device=torch.device('cpu'), | |
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), | |
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
shard_fn=shard_fn if t5_fsdp else None) | |
self.vae_stride = config.vae_stride | |
self.patch_size = config.patch_size | |
self.vae = WanVAE( | |
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), | |
device=self.device) | |
logging.info(f"Creating WanModel from {checkpoint_dir}") | |
self.model = WanModel.from_pretrained(checkpoint_dir) | |
self.model.eval().requires_grad_(False) | |
if use_usp: | |
from xfuser.core.distributed import \ | |
get_sequence_parallel_world_size | |
from .distributed.xdit_context_parallel import (usp_attn_forward, | |
usp_dit_forward) | |
for block in self.model.blocks: | |
block.self_attn.forward = types.MethodType( | |
usp_attn_forward, block.self_attn) | |
self.model.forward = types.MethodType(usp_dit_forward, self.model) | |
self.sp_size = get_sequence_parallel_world_size() | |
else: | |
self.sp_size = 1 | |
if dist.is_initialized(): | |
dist.barrier() | |
if dit_fsdp: | |
self.model = shard_fn(self.model) | |
else: | |
self.model.to(self.device) | |
self.sample_neg_prompt = config.sample_neg_prompt | |
def generate(self, | |
input_prompt, | |
size=(1280, 720), | |
frame_num=81, | |
shift=5.0, | |
sample_solver='unipc', | |
sampling_steps=50, | |
guide_scale=5.0, | |
n_prompt="", | |
seed=-1, | |
offload_model=True): | |
r""" | |
Generates video frames from text prompt using diffusion process. | |
Args: | |
input_prompt (`str`): | |
Text prompt for content generation | |
size (tupele[`int`], *optional*, defaults to (1280,720)): | |
Controls video resolution, (width,height). | |
frame_num (`int`, *optional*, defaults to 81): | |
How many frames to sample from a video. The number should be 4n+1 | |
shift (`float`, *optional*, defaults to 5.0): | |
Noise schedule shift parameter. Affects temporal dynamics | |
sample_solver (`str`, *optional*, defaults to 'unipc'): | |
Solver used to sample the video. | |
sampling_steps (`int`, *optional*, defaults to 40): | |
Number of diffusion sampling steps. Higher values improve quality but slow generation | |
guide_scale (`float`, *optional*, defaults 5.0): | |
Classifier-free guidance scale. Controls prompt adherence vs. creativity | |
n_prompt (`str`, *optional*, defaults to ""): | |
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
seed (`int`, *optional*, defaults to -1): | |
Random seed for noise generation. If -1, use random seed. | |
offload_model (`bool`, *optional*, defaults to True): | |
If True, offloads models to CPU during generation to save VRAM | |
Returns: | |
torch.Tensor: | |
Generated video frames tensor. Dimensions: (C, N H, W) where: | |
- C: Color channels (3 for RGB) | |
- N: Number of frames (81) | |
- H: Frame height (from size) | |
- W: Frame width from size) | |
""" | |
# preprocess | |
F = frame_num | |
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1, | |
size[1] // self.vae_stride[1], | |
size[0] // self.vae_stride[2]) | |
seq_len = math.ceil((target_shape[2] * target_shape[3]) / | |
(self.patch_size[1] * self.patch_size[2]) * | |
target_shape[1] / self.sp_size) * self.sp_size | |
if n_prompt == "": | |
n_prompt = self.sample_neg_prompt | |
seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
seed_g = torch.Generator(device=self.device) | |
seed_g.manual_seed(seed) | |
if not self.t5_cpu: | |
self.text_encoder.model.to(self.device) | |
context = self.text_encoder([input_prompt], self.device) | |
context_null = self.text_encoder([n_prompt], self.device) | |
if offload_model: | |
self.text_encoder.model.cpu() | |
else: | |
context = self.text_encoder([input_prompt], torch.device('cpu')) | |
context_null = self.text_encoder([n_prompt], torch.device('cpu')) | |
context = [t.to(self.device) for t in context] | |
context_null = [t.to(self.device) for t in context_null] | |
noise = [ | |
torch.randn( | |
target_shape[0], | |
target_shape[1], | |
target_shape[2], | |
target_shape[3], | |
dtype=torch.float32, | |
device=self.device, | |
generator=seed_g) | |
] | |
def noop_no_sync(): | |
yield | |
no_sync = getattr(self.model, 'no_sync', noop_no_sync) | |
# evaluation mode | |
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): | |
if sample_solver == 'unipc': | |
sample_scheduler = FlowUniPCMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sample_scheduler.set_timesteps( | |
sampling_steps, device=self.device, shift=shift) | |
timesteps = sample_scheduler.timesteps | |
elif sample_solver == 'dpm++': | |
sample_scheduler = FlowDPMSolverMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
timesteps, _ = retrieve_timesteps( | |
sample_scheduler, | |
device=self.device, | |
sigmas=sampling_sigmas) | |
else: | |
raise NotImplementedError("Unsupported solver.") | |
# sample videos | |
latents = noise | |
arg_c = {'context': context, 'seq_len': seq_len} | |
arg_null = {'context': context_null, 'seq_len': seq_len} | |
for _, t in enumerate(tqdm(timesteps)): | |
latent_model_input = latents | |
timestep = [t] | |
timestep = torch.stack(timestep) | |
self.model.to(self.device) | |
noise_pred_cond = self.model( | |
latent_model_input, t=timestep, **arg_c)[0] | |
noise_pred_uncond = self.model( | |
latent_model_input, t=timestep, **arg_null)[0] | |
noise_pred = noise_pred_uncond + guide_scale * ( | |
noise_pred_cond - noise_pred_uncond) | |
temp_x0 = sample_scheduler.step( | |
noise_pred.unsqueeze(0), | |
t, | |
latents[0].unsqueeze(0), | |
return_dict=False, | |
generator=seed_g)[0] | |
latents = [temp_x0.squeeze(0)] | |
x0 = latents | |
if offload_model: | |
self.model.cpu() | |
torch.cuda.empty_cache() | |
if self.rank == 0: | |
videos = self.vae.decode(x0) | |
del noise, latents | |
del sample_scheduler | |
if offload_model: | |
gc.collect() | |
torch.cuda.synchronize() | |
if dist.is_initialized(): | |
dist.barrier() | |
return videos[0] if self.rank == 0 else None | |