FramePack-F1 / app_pfqt.py
rahul7star's picture
Update app_pfqt.py
8920200 verified
from diffusers_helper.hf_login import login
import os
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
# 20250506 pftq: Added for video input loading
import decord
# 20250506 pftq: Added for progress bars in video_encode
from tqdm import tqdm
# 20250506 pftq: Normalize file paths for Windows compatibility
import pathlib
# 20250506 pftq: for easier to read timestamp
from datetime import datetime
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
args = parser.parse_args()
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = False
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# 20250506 pftq: Added function to encode input video frames into latents
@torch.no_grad()
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=2, device="cuda", width=None, height=None):
"""
Encode a video into latent representations using the VAE.
Args:
video_path: Path to the input video file.
vae: AutoencoderKLHunyuanVideo model.
height, width: Target resolution for resizing frames.
vae_batch_size: Number of frames to process per batch.
device: Device for computation (e.g., "cuda").
Returns:
start_latent: Latent of the first frame (for compatibility with original code).
input_image_np: First frame as numpy array (for CLIP vision encoding).
history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
fps: Frames per second of the input video.
"""
# 20250506 pftq: Normalize video path for Windows compatibility
video_path = str(pathlib.Path(video_path).resolve())
print(f"Processing video: {video_path}")
# 20250506 pftq: Check CUDA availability and fallback to CPU if needed
if device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available, falling back to CPU")
device = "cpu"
try:
# 20250506 pftq: Load video and get FPS
print("Initializing VideoReader...")
vr = decord.VideoReader(video_path)
fps = vr.get_avg_fps() # Get input video FPS
num_real_frames = len(vr)
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
# Truncate to nearest latent size (multiple of 4)
latent_size_factor = 4
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
if num_frames != num_real_frames:
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
num_real_frames = num_frames
# 20250506 pftq: Read frames
print("Reading video frames...")
frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
print(f"Frames read: {frames.shape}")
# 20250506 pftq: Get native video resolution
native_height, native_width = frames.shape[1], frames.shape[2]
print(f"Native video resolution: {native_width}x{native_height}")
# 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
target_height = native_height if height is None else height
target_width = native_width if width is None else width
# 20250506 pftq: Adjust to nearest bucket for model compatibility
if not no_resize:
target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
print(f"Adjusted resolution: {target_width}x{target_height}")
else:
print(f"Using native resolution without resizing: {target_width}x{target_height}")
# 20250506 pftq: Preprocess frames to match original image processing
processed_frames = []
for i, frame in enumerate(frames):
#print(f"Preprocessing frame {i+1}/{num_frames}")
frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
processed_frames.append(frame_np)
processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
print(f"Frames preprocessed: {processed_frames.shape}")
# 20250506 pftq: Save first frame for CLIP vision encoding
input_image_np = processed_frames[0]
# 20250506 pftq: Convert to tensor and normalize to [-1, 1]
print("Converting frames to tensor...")
frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
print(f"Tensor shape: {frames_pt.shape}")
# 20250507 pftq: Save pixel frames for use in worker
input_video_pixels = frames_pt.cpu()
# 20250506 pftq: Move to device
print(f"Moving tensor to device: {device}")
frames_pt = frames_pt.to(device)
print("Tensor moved to device")
# 20250506 pftq: Move VAE to device
print(f"Moving VAE to device: {device}")
vae.to(device)
print("VAE moved to device")
# 20250506 pftq: Encode frames in batches
print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if VRAM issues or forcing larger video resolution)")
latents = []
vae.eval()
with torch.no_grad():
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
#print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
try:
# 20250506 pftq: Log GPU memory before encoding
if device == "cuda":
free_mem = torch.cuda.memory_allocated() / 1024**3
#print(f"GPU memory before encoding: {free_mem:.2f} GB")
batch_latent = vae_encode(batch, vae)
# 20250506 pftq: Synchronize CUDA to catch issues
if device == "cuda":
torch.cuda.synchronize()
#print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
latents.append(batch_latent)
#print(f"Batch encoded, latent shape: {batch_latent.shape}")
except RuntimeError as e:
print(f"Error during VAE encoding: {str(e)}")
if device == "cuda" and "out of memory" in str(e).lower():
print("CUDA out of memory, try reducing vae_batch_size or using CPU")
raise
# 20250506 pftq: Concatenate latents
print("Concatenating latents...")
history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
print(f"History latents shape: {history_latents.shape}")
# 20250506 pftq: Get first frame's latent
start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
print(f"Start latent shape: {start_latent.shape}")
# 20250506 pftq: Move VAE back to CPU to free GPU memory
if device == "cuda":
vae.to(cpu)
torch.cuda.empty_cache()
print("VAE moved back to CPU, CUDA cache cleared")
return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels
except Exception as e:
print(f"Error in video_encode: {str(e)}")
raise
# 20250506 pftq: Modified worker to accept video input, FPS, and clean frame count
@torch.no_grad()
def worker(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, fps, num_clean_frames, vae_batch):
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Clean GPU
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# 20250506 pftq: Processing input video instead of image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
# 20250506 pftq: Encode video
#H, W = 640, 640 # Default resolution, will be adjusted
#height, width = find_nearest_bucket(H, W, resolution=640)
#start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
for idx in range(batch):
if idx>0:
seed = seed + 1
if batch > 1:
print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
#job_id = generate_timestamp()
job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_seed-{seed}" # 20250506 pftq: easier to read timestamp and filename
# Sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
# 20250506 pftq: Initialize history_latents with video latents
history_latents = video_latents.cpu()
total_generated_latent_frames = history_latents.shape[2]
# 20250506 pftq: Initialize history_pixels to fix UnboundLocalError
history_pixels = None
previous_video = None
# 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
#history_pixels = input_video_pixels
#save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
# 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
available_frames = history_latents.shape[2]
# Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0
effective_clean_frames = min(effective_clean_frames, available_frames - 1) if available_frames > 1 else 0
num_2x_frames = min(2, max(0, available_frames - effective_clean_frames)) # Up to 2 frames for 2x
num_4x_frames = min(16, max(0, available_frames - effective_clean_frames - num_2x_frames)) # Remainder for 4x
total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, latent_window_size])).unsqueeze(0)
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
[1, num_4x_frames, num_2x_frames, effective_clean_frames, latent_window_size], dim=1
)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
# 20250506 pftq: Split history_latents dynamically based on available frames
context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :0, :, :]
if total_context_frames > 0:
split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes
if split_sizes:
splits = context_frames.split(split_sizes, dim=2)
split_idx = 0
clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :0, :, :]
split_idx += 1 if num_4x_frames > 0 else 0
clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :0, :, :]
split_idx += 1 if num_2x_frames > 0 else 0
clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :0, :, :]
else:
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :0, :, :]
else:
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :0, :, :]
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
#if section_index == 0:
#extra_latents = 2 # Add up to 2 extra latent frames for smoother overlap to initial video
#extra_pixel_frames = extra_latents * 4 # Approx. 4 pixel frames per latent
#overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4)
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
# 20250506 pftq: Use input video FPS for output
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
print(f"Latest video saved: {output_filename}")
# 20250506 pftq: Clean up previous partial files
if previous_video is not None:
try:
os.remove(previous_video)
print(f"Previous partial video deleted: {previous_video}")
except Exception as e:
print(f"Error deleting previous partial video {previous_video}: {e}")
previous_video = output_filename
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
stream.output_queue.push(('end', None))
return
# 20250506 pftq: Modified process to pass FPS and clean frame count from video_encode
def get_duration(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
global stream
# 20250506 pftq: Updated assertion for video input
assert input_video is not None, 'No input video!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
# 20250506 pftq: Get FPS from input video
vr = decord.VideoReader(input_video)
fps = vr.get_avg_fps()
# 20250506 pftq: Pass FPS and num_clean_frames to worker
async_run(worker, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, fps, num_clean_frames, vae_batch)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
if flag == 'end':
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
# 20250506 pftq: Updated title to reflect video input functionality
gr.Markdown('# Framepack F1 with Video Input (Video Extension)')
with gr.Row():
with gr.Column():
# 20250506 pftq: Changed to Video input from Image
input_video = gr.Video(sources='upload', label="Input Video", height=320)
prompt = gr.Textbox(label="Prompt", value='')
#example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
#example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
with gr.Group():
with gr.Row():
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
seed = gr.Number(label="Seed", value=31337, precision=0)
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)
total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
# 20250506 pftq: Renamed slider to Number of Context Frames and updated description
num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=1, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.")
# 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more control + Negative Prompt (make sure Distilled set to 1). Doubles render time.') # Should not change
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=128, value=32, step=4, info="Reduce if running out of memory. Increase for better quality of frames from input video.")
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
with gr.Column():
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
gr.HTML("""
<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
""")
# 20250506 pftq: Updated inputs to include num_clean_frames
ips = [input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
end_button.click(fn=end_process)
block.launch(share=True)