radames's picture
Update visualblocks/server.py
4e62450 verified
from datetime import datetime
from flask import Flask
from flask import make_response
from flask import request
from flask import send_from_directory, redirect
from typing import Literal
import json
import logging
import numpy as np
import os
import portpicker
import requests
import shutil
import sys
import threading
import traceback
import urllib.parse
import zipfile
_VISUAL_BLOCKS_BUNDLE_VERSION = "1716228179"
# Disable logging from werkzeug.
#
# Without this, flask will show a warning about using dev server (which is OK
# in our usecase).
logging.getLogger("werkzeug").disabled = True
# Function registrations.
GENERIC_FNS = {}
TEXT_TO_TEXT_FNS = {}
TEXT_TO_TENSORS_FNS = {}
def register_vb_fn(
type: Literal["generic", "text_to_text", "text_to_tensors"] = "generic"
):
"""A function decorator to register python function with Visual Blocks.
Args:
type:
the type of function to register for.
Currently, VB supports the following function types:
generic:
A function or iterable of functions, defined in the same Colab notebook,
that Visual Blocks can call to implement a generic model runner block.
A generic inference function must take a single argument, the input
tensors as an iterable of numpy.ndarrays; run inference; and return the
output tensors, also as an iterable of numpy.ndarrays.
text_to_text:
A function or iterable of functions, defined in the same Colab notebook,
that Visual Blocks can call to implement a text-to-text model runner
block.
A text_to_text function must take a string and return a string.
text_to_tensors:
A function or iterable of functions, defined in the same Colab notebook,
that Visual Blocks can call to implement a text-to-tensors model runner
block.
A text_to_tensors function must take a string and return the output
tensors, as an iterable of numpy.ndarrays.
"""
def decorator_register_vb_fn(func):
func_name = func.__name__
if type == "generic":
GENERIC_FNS[func_name] = func
elif type == "text_to_text":
TEXT_TO_TEXT_FNS[func_name] = func
elif type == "text_to_tensors":
TEXT_TO_TENSORS_FNS[func_name] = func
return func
return decorator_register_vb_fn
def _json_to_ndarray(json_tensor):
"""Convert a JSON dictionary from the web app to an np.ndarray."""
array = np.array(json_tensor["tensorValues"])
array.shape = json_tensor["tensorShape"]
return array
def _ndarray_to_json(array):
"""Convert a np.ndarray to the JSON dictionary for the web app."""
values = array.ravel().tolist()
shape = array.shape
return {
"tensorValues": values,
"tensorShape": shape,
}
def _make_json_response(obj):
body = json.dumps(obj)
resp = make_response(body)
resp.headers["Content-Type"] = "application/json"
return resp
def _ensure_iterable(x):
"""Turn x into an iterable if not already iterable."""
if x is None:
return ()
elif hasattr(x, "__iter__"):
return x
else:
return (x,)
def _add_to_registry(fns, registry):
"""Adds the functions to the given registry (dict)."""
for fn in fns:
registry[fn.__name__] = fn
def _is_list_of_nd_array(obj):
return isinstance(obj, list) and all(isinstance(elem, np.ndarray) for elem in obj)
def Server(
host="0.0.0.0",
port=7860,
generic=None,
text_to_text=None,
text_to_tensors=None,
height=900,
tmp_dir="/tmp",
read_saved_pipeline=True,
):
"""Creates a server that serves visual blocks web app in an iFrame.
Other than serving the web app, it will also listen to requests sent from the
web app at various API end points. Once a request is received, it will use the
data in the request body to call the corresponding functions that users have
registered with VB, either through the '@register_vb_fn' decorator, or passed
in when creating the server.
Args:
generic:
A function or iterable of functions, defined in the same Colab notebook,
that Visual Blocks can call to implement a generic model runner block.
A generic inference function must take a single argument, the input
tensors as an iterable of numpy.ndarrays; run inference; and return the output
tensors, also as an iterable of numpy.ndarrays.
text_to_text:
A function or iterable of functions, defined in the same Colab notebook,
that Visual Blocks can call to implement a text-to-text model runner
block.
A text_to_text function must take a string and return a string.
text_to_tensors:
A function or iterable of functions, defined in the same Colab notebook,
that Visual Blocks can call to implement a text-to-tensors model runner
block.
A text_to_tensors function must take a string and return the output
tensors, as an iterable of numpy.ndarrays.
height:
The height of the embedded iFrame.
tmp_dir:
The tmp dir where the server stores the web app's static resources.
read_saved_pipeline:
Whether to read the saved pipeline in the notebook or not.
"""
_add_to_registry(_ensure_iterable(generic), GENERIC_FNS)
_add_to_registry(_ensure_iterable(text_to_text), TEXT_TO_TEXT_FNS)
_add_to_registry(_ensure_iterable(text_to_tensors), TEXT_TO_TENSORS_FNS)
app = Flask(__name__)
# Disable startup messages.
cli = sys.modules["flask.cli"]
cli.show_server_banner = lambda *x: None
# Prepare tmp dir and log file.
base_path = tmp_dir + "/visual-blocks-colab"
if os.path.exists(base_path):
shutil.rmtree(base_path)
os.mkdir(base_path)
log_file_path = base_path + "/log"
open(log_file_path, "w").close()
# Download the zip file that bundles the visual blocks web app.
bundle_target_path = os.path.join(base_path, "visual_blocks.zip")
url = (
"https://storage.googleapis.com/tfweb/rapsai-colab-bundles/visual_blocks_%s.zip"
% _VISUAL_BLOCKS_BUNDLE_VERSION
)
r = requests.get(url)
with open(bundle_target_path, "wb") as zip_file:
zip_file.write(r.content)
# Unzip it.
# This will unzip all files to {base_path}/build.
with zipfile.ZipFile(bundle_target_path, "r") as zip_ref:
zip_ref.extractall(base_path)
site_root_path = os.path.join(base_path, "build")
def log(msg):
"""Logs the given message to the log file."""
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
with open(log_file_path, "a") as log_file:
log_file.write("{}: {}\n".format(dt_string, msg))
@app.route("/api/list_inference_functions")
def list_inference_functions():
result = {}
if len(GENERIC_FNS):
result["generic"] = list(GENERIC_FNS.keys())
result["generic"].sort()
if len(TEXT_TO_TEXT_FNS):
result["text_to_text"] = list(TEXT_TO_TEXT_FNS.keys())
result["text_to_text"].sort()
if len(TEXT_TO_TENSORS_FNS):
result["text_to_tensors"] = list(TEXT_TO_TENSORS_FNS.keys())
result["text_to_tensors"].sort()
return _make_json_response(result)
# Note: using "/api/..." for POST requests is not allowed.
@app.route("/apipost/inference", methods=["POST"])
def inference_generic():
"""Handler for the generic api endpoint."""
result = {}
try:
func_name = request.json["function"]
inference_fn = GENERIC_FNS[func_name]
input_tensors = [_json_to_ndarray(x) for x in request.json["tensors"]]
output_tensors = inference_fn(input_tensors)
if not _is_list_of_nd_array(output_tensors):
result = {
"error": "The returned value from %s is not a list of ndarray"
% func_name
}
else:
result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
except Exception as e:
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
result = {"error": msg}
finally:
return _make_json_response(result)
# Note: using "/api/..." for POST requests is not allowed.
@app.route("/apipost/inference_text_to_text", methods=["POST"])
def inference_text_to_text():
"""Handler for the text_to_text api endpoint."""
result = {}
try:
func_name = request.json["function"]
inference_fn = TEXT_TO_TEXT_FNS[func_name]
text = request.json["text"]
ret = inference_fn(text)
if not isinstance(ret, str):
result = {
"error": "The returned value from %s is not a string" % func_name
}
else:
result["text"] = ret
except Exception as e:
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
result = {"error": msg}
finally:
return _make_json_response(result)
# Note: using "/api/..." for POST requests is not allowed.
@app.route("/apipost/inference_text_to_tensors", methods=["POST"])
def inference_text_to_tensors():
"""Handler for the text_to_tensors api endpoint."""
result = {}
try:
func_name = request.json["function"]
inference_fn = TEXT_TO_TENSORS_FNS[func_name]
text = request.json["text"]
output_tensors = inference_fn(text)
if not _is_list_of_nd_array(output_tensors):
result = {
"error": "The returned value from %s is not a list of ndarray"
% func_name
}
else:
result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
except Exception as e:
msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
result = {"error": msg}
finally:
return _make_json_response(result)
@app.route("/")
def redirect_to_edit_new():
"""Redirect root URL to /#/edit/new/"""
return redirect("/#/edit/new/")
@app.route("/<path:path>")
def get_static(path):
"""Handler for serving static resources."""
if path == "":
path = "index.html"
return send_from_directory(site_root_path, path)
# Start background server.
# threading.Thread(target=app.run, kwargs={"host": host, "port": port}).start()
# A thin wrapper class for exposing a "display" method.
class _Server:
def run(self):
print("Visual Blocks server started at http://%s:%s" % (host, port))
app.run(host=host, port=port)
return _Server()