endo-yuki-t
initial commit
d7dbcdd
raw
history blame
No virus
18.8 kB
from __future__ import division
import torch
import random
import numpy as np
import numbers
import types
import scipy.ndimage as ndimage
import pdb
import torchvision
import PIL.Image as Image
import cv2
from torch.nn import functional as F
class Compose(object):
""" Composes several co_transforms together.
For example:
>>> co_transforms.Compose([
>>> co_transforms.CenterCrop(10),
>>> co_transforms.ToTensor(),
>>> ])
"""
def __init__(self, co_transforms):
self.co_transforms = co_transforms
def __call__(self, input, target):
for t in self.co_transforms:
input,target = t(input,target)
return input,target
class Scale(object):
""" Rescales the inputs and target arrays to the given 'size'.
'size' will be the size of the smaller edge.
For example, if height > width, then image will be
rescaled to (size * height / width, size)
size: size of the smaller edge
interpolation order: Default: 2 (bilinear)
"""
def __init__(self, size, order=1):
self.ratio = size
self.order = order
if order==0:
self.code=cv2.INTER_NEAREST
elif order==1:
self.code=cv2.INTER_LINEAR
elif order==2:
self.code=cv2.INTER_CUBIC
def __call__(self, inputs, target):
if self.ratio==1:
return inputs, target
h, w, _ = inputs[0].shape
ratio = self.ratio
inputs[0] = cv2.resize(inputs[0], None, fx=ratio,fy=ratio,interpolation=cv2.INTER_LINEAR)
inputs[1] = cv2.resize(inputs[1], None, fx=ratio,fy=ratio,interpolation=cv2.INTER_LINEAR)
# keep the mask same
tmp = cv2.resize(target[:,:,2], None, fx=ratio,fy=ratio,interpolation=cv2.INTER_NEAREST)
target = cv2.resize(target, None, fx=ratio,fy=ratio,interpolation=self.code) * ratio
target[:,:,2] = tmp
return inputs, target
class SpatialAug(object):
def __init__(self, crop, scale=None, rot=None, trans=None, squeeze=None, schedule_coeff=1, order=1, black=False):
self.crop = crop
self.scale = scale
self.rot = rot
self.trans = trans
self.squeeze = squeeze
self.t = np.zeros(6)
self.schedule_coeff = schedule_coeff
self.order = order
self.black = black
def to_identity(self):
self.t[0] = 1; self.t[2] = 0; self.t[4] = 0; self.t[1] = 0; self.t[3] = 1; self.t[5] = 0;
def left_multiply(self, u0, u1, u2, u3, u4, u5):
result = np.zeros(6)
result[0] = self.t[0]*u0 + self.t[1]*u2;
result[1] = self.t[0]*u1 + self.t[1]*u3;
result[2] = self.t[2]*u0 + self.t[3]*u2;
result[3] = self.t[2]*u1 + self.t[3]*u3;
result[4] = self.t[4]*u0 + self.t[5]*u2 + u4;
result[5] = self.t[4]*u1 + self.t[5]*u3 + u5;
self.t = result
def inverse(self):
result = np.zeros(6)
a = self.t[0]; c = self.t[2]; e = self.t[4];
b = self.t[1]; d = self.t[3]; f = self.t[5];
denom = a*d - b*c;
result[0] = d / denom;
result[1] = -b / denom;
result[2] = -c / denom;
result[3] = a / denom;
result[4] = (c*f-d*e) / denom;
result[5] = (b*e-a*f) / denom;
return result
def grid_transform(self, meshgrid, t, normalize=True, gridsize=None):
if gridsize is None:
h, w = meshgrid[0].shape
else:
h, w = gridsize
vgrid = torch.cat([(meshgrid[0] * t[0] + meshgrid[1] * t[2] + t[4])[:,:,np.newaxis],
(meshgrid[0] * t[1] + meshgrid[1] * t[3] + t[5])[:,:,np.newaxis]],-1)
if normalize:
vgrid[:,:,0] = 2.0*vgrid[:,:,0]/max(w-1,1)-1.0
vgrid[:,:,1] = 2.0*vgrid[:,:,1]/max(h-1,1)-1.0
return vgrid
def __call__(self, inputs, target):
h, w, _ = inputs[0].shape
th, tw = self.crop
meshgrid = torch.meshgrid([torch.Tensor(range(th)), torch.Tensor(range(tw))])[::-1]
cornergrid = torch.meshgrid([torch.Tensor([0,th-1]), torch.Tensor([0,tw-1])])[::-1]
for i in range(50):
# im0
self.to_identity()
#TODO add mirror
if np.random.binomial(1,0.5):
mirror = True
else:
mirror = False
##TODO
#mirror = False
if mirror:
self.left_multiply(-1, 0, 0, 1, .5 * tw, -.5 * th);
else:
self.left_multiply(1, 0, 0, 1, -.5 * tw, -.5 * th);
scale0 = 1; scale1 = 1; squeeze0 = 1; squeeze1 = 1;
if not self.rot is None:
rot0 = np.random.uniform(-self.rot[0],+self.rot[0])
rot1 = np.random.uniform(-self.rot[1]*self.schedule_coeff, self.rot[1]*self.schedule_coeff) + rot0
self.left_multiply(np.cos(rot0), np.sin(rot0), -np.sin(rot0), np.cos(rot0), 0, 0)
if not self.trans is None:
trans0 = np.random.uniform(-self.trans[0],+self.trans[0], 2)
trans1 = np.random.uniform(-self.trans[1]*self.schedule_coeff,+self.trans[1]*self.schedule_coeff, 2) + trans0
self.left_multiply(1, 0, 0, 1, trans0[0] * tw, trans0[1] * th)
if not self.squeeze is None:
squeeze0 = np.exp(np.random.uniform(-self.squeeze[0], self.squeeze[0]))
squeeze1 = np.exp(np.random.uniform(-self.squeeze[1]*self.schedule_coeff, self.squeeze[1]*self.schedule_coeff)) * squeeze0
if not self.scale is None:
scale0 = np.exp(np.random.uniform(self.scale[2]-self.scale[0], self.scale[2]+self.scale[0]))
scale1 = np.exp(np.random.uniform(-self.scale[1]*self.schedule_coeff, self.scale[1]*self.schedule_coeff)) * scale0
self.left_multiply(1.0/(scale0*squeeze0), 0, 0, 1.0/(scale0/squeeze0), 0, 0)
self.left_multiply(1, 0, 0, 1, .5 * w, .5 * h);
transmat0 = self.t.copy()
# im1
self.to_identity()
if mirror:
self.left_multiply(-1, 0, 0, 1, .5 * tw, -.5 * th);
else:
self.left_multiply(1, 0, 0, 1, -.5 * tw, -.5 * th);
if not self.rot is None:
self.left_multiply(np.cos(rot1), np.sin(rot1), -np.sin(rot1), np.cos(rot1), 0, 0)
if not self.trans is None:
self.left_multiply(1, 0, 0, 1, trans1[0] * tw, trans1[1] * th)
self.left_multiply(1.0/(scale1*squeeze1), 0, 0, 1.0/(scale1/squeeze1), 0, 0)
self.left_multiply(1, 0, 0, 1, .5 * w, .5 * h);
transmat1 = self.t.copy()
transmat1_inv = self.inverse()
if self.black:
# black augmentation, allowing 0 values in the input images
# https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/black_augmentation_layer.cu
break
else:
if ((self.grid_transform(cornergrid, transmat0, gridsize=[float(h),float(w)]).abs()>1).sum() +\
(self.grid_transform(cornergrid, transmat1, gridsize=[float(h),float(w)]).abs()>1).sum()) == 0:
break
if i==49:
print('max_iter in augmentation')
self.to_identity()
self.left_multiply(1, 0, 0, 1, -.5 * tw, -.5 * th);
self.left_multiply(1, 0, 0, 1, .5 * w, .5 * h);
transmat0 = self.t.copy()
transmat1 = self.t.copy()
# do the real work
vgrid = self.grid_transform(meshgrid, transmat0,gridsize=[float(h),float(w)])
inputs_0 = F.grid_sample(torch.Tensor(inputs[0]).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
if self.order == 0:
target_0 = F.grid_sample(torch.Tensor(target).permute(2,0,1)[np.newaxis], vgrid[np.newaxis], mode='nearest')[0].permute(1,2,0)
else:
target_0 = F.grid_sample(torch.Tensor(target).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
mask_0 = target[:,:,2:3].copy(); mask_0[mask_0==0]=np.nan
if self.order == 0:
mask_0 = F.grid_sample(torch.Tensor(mask_0).permute(2,0,1)[np.newaxis], vgrid[np.newaxis], mode='nearest')[0].permute(1,2,0)
else:
mask_0 = F.grid_sample(torch.Tensor(mask_0).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
mask_0[torch.isnan(mask_0)] = 0
vgrid = self.grid_transform(meshgrid, transmat1,gridsize=[float(h),float(w)])
inputs_1 = F.grid_sample(torch.Tensor(inputs[1]).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
# flow
pos = target_0[:,:,:2] + self.grid_transform(meshgrid, transmat0,normalize=False)
pos = self.grid_transform(pos.permute(2,0,1),transmat1_inv,normalize=False)
if target_0.shape[2]>=4:
# scale
exp = target_0[:,:,3:] * scale1 / scale0
target = torch.cat([ (pos[:,:,0] - meshgrid[0]).unsqueeze(-1),
(pos[:,:,1] - meshgrid[1]).unsqueeze(-1),
mask_0,
exp], -1)
else:
target = torch.cat([ (pos[:,:,0] - meshgrid[0]).unsqueeze(-1),
(pos[:,:,1] - meshgrid[1]).unsqueeze(-1),
mask_0], -1)
# target_0[:,:,2].unsqueeze(-1) ], -1)
inputs = [np.asarray(inputs_0), np.asarray(inputs_1)]
target = np.asarray(target)
return inputs,target
class pseudoPCAAug(object):
"""
Chromatic Eigen Augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
This version is faster.
"""
def __init__(self, schedule_coeff=1):
self.augcolor = torchvision.transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.5, hue=0.5/3.14)
def __call__(self, inputs, target):
inputs[0] = np.asarray(self.augcolor(Image.fromarray(np.uint8(inputs[0]*255))))/255.
inputs[1] = np.asarray(self.augcolor(Image.fromarray(np.uint8(inputs[1]*255))))/255.
return inputs,target
class PCAAug(object):
"""
Chromatic Eigen Augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
"""
def __init__(self, lmult_pow =[0.4, 0,-0.2],
lmult_mult =[0.4, 0,0, ],
lmult_add =[0.03,0,0, ],
sat_pow =[0.4, 0,0, ],
sat_mult =[0.5, 0,-0.3],
sat_add =[0.03,0,0, ],
col_pow =[0.4, 0,0, ],
col_mult =[0.2, 0,0, ],
col_add =[0.02,0,0, ],
ladd_pow =[0.4, 0,0, ],
ladd_mult =[0.4, 0,0, ],
ladd_add =[0.04,0,0, ],
col_rotate =[1., 0,0, ],
schedule_coeff=1):
# no mean
self.pow_nomean = [1,1,1]
self.add_nomean = [0,0,0]
self.mult_nomean = [1,1,1]
self.pow_withmean = [1,1,1]
self.add_withmean = [0,0,0]
self.mult_withmean = [1,1,1]
self.lmult_pow = 1
self.lmult_mult = 1
self.lmult_add = 0
self.col_angle = 0
if not ladd_pow is None:
self.pow_nomean[0] =np.exp(np.random.normal(ladd_pow[2], ladd_pow[0]))
if not col_pow is None:
self.pow_nomean[1] =np.exp(np.random.normal(col_pow[2], col_pow[0]))
self.pow_nomean[2] =np.exp(np.random.normal(col_pow[2], col_pow[0]))
if not ladd_add is None:
self.add_nomean[0] =np.random.normal(ladd_add[2], ladd_add[0])
if not col_add is None:
self.add_nomean[1] =np.random.normal(col_add[2], col_add[0])
self.add_nomean[2] =np.random.normal(col_add[2], col_add[0])
if not ladd_mult is None:
self.mult_nomean[0] =np.exp(np.random.normal(ladd_mult[2], ladd_mult[0]))
if not col_mult is None:
self.mult_nomean[1] =np.exp(np.random.normal(col_mult[2], col_mult[0]))
self.mult_nomean[2] =np.exp(np.random.normal(col_mult[2], col_mult[0]))
# with mean
if not sat_pow is None:
self.pow_withmean[1] =np.exp(np.random.uniform(sat_pow[2]-sat_pow[0], sat_pow[2]+sat_pow[0]))
self.pow_withmean[2] =self.pow_withmean[1]
if not sat_add is None:
self.add_withmean[1] =np.random.uniform(sat_add[2]-sat_add[0], sat_add[2]+sat_add[0])
self.add_withmean[2] =self.add_withmean[1]
if not sat_mult is None:
self.mult_withmean[1] = np.exp(np.random.uniform(sat_mult[2]-sat_mult[0], sat_mult[2]+sat_mult[0]))
self.mult_withmean[2] = self.mult_withmean[1]
if not lmult_pow is None:
self.lmult_pow = np.exp(np.random.uniform(lmult_pow[2]-lmult_pow[0], lmult_pow[2]+lmult_pow[0]))
if not lmult_mult is None:
self.lmult_mult= np.exp(np.random.uniform(lmult_mult[2]-lmult_mult[0], lmult_mult[2]+lmult_mult[0]))
if not lmult_add is None:
self.lmult_add = np.random.uniform(lmult_add[2]-lmult_add[0], lmult_add[2]+lmult_add[0])
if not col_rotate is None:
self.col_angle= np.random.uniform(col_rotate[2]-col_rotate[0], col_rotate[2]+col_rotate[0])
# eigen vectors
self.eigvec = np.reshape([0.51,0.56,0.65,0.79,0.01,-0.62,0.35,-0.83,0.44],[3,3]).transpose()
def __call__(self, inputs, target):
inputs[0] = self.pca_image(inputs[0])
inputs[1] = self.pca_image(inputs[1])
return inputs,target
def pca_image(self, rgb):
eig = np.dot(rgb, self.eigvec)
max_rgb = np.clip(rgb,0,np.inf).max((0,1))
min_rgb = rgb.min((0,1))
mean_rgb = rgb.mean((0,1))
max_abs_eig = np.abs(eig).max((0,1))
max_l = np.sqrt(np.sum(max_abs_eig*max_abs_eig))
mean_eig = np.dot(mean_rgb, self.eigvec)
# no-mean stuff
eig -= mean_eig[np.newaxis, np.newaxis]
for c in range(3):
if max_abs_eig[c] > 1e-2:
mean_eig[c] /= max_abs_eig[c]
eig[:,:,c] = eig[:,:,c] / max_abs_eig[c];
eig[:,:,c] = np.power(np.abs(eig[:,:,c]),self.pow_nomean[c]) *\
((eig[:,:,c] > 0) -0.5)*2
eig[:,:,c] = eig[:,:,c] + self.add_nomean[c]
eig[:,:,c] = eig[:,:,c] * self.mult_nomean[c]
eig += mean_eig[np.newaxis,np.newaxis]
# withmean stuff
if max_abs_eig[0] > 1e-2:
eig[:,:,0] = np.power(np.abs(eig[:,:,0]),self.pow_withmean[0]) * \
((eig[:,:,0]>0)-0.5)*2;
eig[:,:,0] = eig[:,:,0] + self.add_withmean[0];
eig[:,:,0] = eig[:,:,0] * self.mult_withmean[0];
s = np.sqrt(eig[:,:,1]*eig[:,:,1] + eig[:,:,2] * eig[:,:,2])
smask = s > 1e-2
s1 = np.power(s, self.pow_withmean[1]);
s1 = np.clip(s1 + self.add_withmean[1], 0,np.inf)
s1 = s1 * self.mult_withmean[1]
s1 = s1 * smask + s*(1-smask)
# color angle
if self.col_angle!=0:
temp1 = np.cos(self.col_angle) * eig[:,:,1] - np.sin(self.col_angle) * eig[:,:,2]
temp2 = np.sin(self.col_angle) * eig[:,:,1] + np.cos(self.col_angle) * eig[:,:,2]
eig[:,:,1] = temp1
eig[:,:,2] = temp2
# to origin magnitude
for c in range(3):
if max_abs_eig[c] > 1e-2:
eig[:,:,c] = eig[:,:,c] * max_abs_eig[c]
if max_l > 1e-2:
l1 = np.sqrt(eig[:,:,0]*eig[:,:,0] + eig[:,:,1]*eig[:,:,1] + eig[:,:,2]*eig[:,:,2])
l1 = l1 / max_l
eig[:,:,1][smask] = (eig[:,:,1] / s * s1)[smask]
eig[:,:,2][smask] = (eig[:,:,2] / s * s1)[smask]
#eig[:,:,1] = (eig[:,:,1] / s * s1) * smask + eig[:,:,1] * (1-smask)
#eig[:,:,2] = (eig[:,:,2] / s * s1) * smask + eig[:,:,2] * (1-smask)
if max_l > 1e-2:
l = np.sqrt(eig[:,:,0]*eig[:,:,0] + eig[:,:,1]*eig[:,:,1] + eig[:,:,2]*eig[:,:,2])
l1 = np.power(l1, self.lmult_pow)
l1 = np.clip(l1 + self.lmult_add, 0, np.inf)
l1 = l1 * self.lmult_mult
l1 = l1 * max_l
lmask = l > 1e-2
eig[lmask] = (eig / l[:,:,np.newaxis] * l1[:,:,np.newaxis])[lmask]
for c in range(3):
eig[:,:,c][lmask] = (np.clip(eig[:,:,c], -np.inf, max_abs_eig[c]))[lmask]
# for c in range(3):
# # eig[:,:,c][lmask] = (eig[:,:,c] / l * l1)[lmask] * lmask + eig[:,:,c] * (1-lmask)
# eig[:,:,c][lmask] = (eig[:,:,c] / l * l1)[lmask]
# eig[:,:,c] = (np.clip(eig[:,:,c], -np.inf, max_abs_eig[c])) * lmask + eig[:,:,c] * (1-lmask)
return np.clip(np.dot(eig, self.eigvec.transpose()), 0, 1)
class ChromaticAug(object):
"""
Chromatic augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
"""
def __init__(self, noise = 0.06,
gamma = 0.02,
brightness = 0.02,
contrast = 0.02,
color = 0.02,
schedule_coeff=1):
self.noise = np.random.uniform(0,noise)
self.gamma = np.exp(np.random.normal(0, gamma*schedule_coeff))
self.brightness = np.random.normal(0, brightness*schedule_coeff)
self.contrast = np.exp(np.random.normal(0, contrast*schedule_coeff))
self.color = np.exp(np.random.normal(0, color*schedule_coeff,3))
def __call__(self, inputs, target):
inputs[1] = self.chrom_aug(inputs[1])
# noise
inputs[0]+=np.random.normal(0, self.noise, inputs[0].shape)
inputs[1]+=np.random.normal(0, self.noise, inputs[0].shape)
return inputs,target
def chrom_aug(self, rgb):
# color change
mean_in = rgb.sum(-1)
rgb = rgb*self.color[np.newaxis,np.newaxis]
brightness_coeff = mean_in / (rgb.sum(-1)+0.01)
rgb = np.clip(rgb*brightness_coeff[:,:,np.newaxis],0,1)
# gamma
rgb = np.power(rgb,self.gamma)
# brightness
rgb += self.brightness
# contrast
rgb = 0.5 + ( rgb-0.5)*self.contrast
rgb = np.clip(rgb, 0, 1)
return rgb