llm-assessments / utils.py
mmahesh873's picture
added utils
92b387d
raw
history blame
5.41 kB
import pandas as pd
import json
class ResultsProcessor:
def __init__(self, prompt_option, result_file, data_dict):
self.prompt_option = prompt_option
self.result_file = result_file
self.data_dict = data_dict
def get_overall_performance(self):
return round(self.data_dict["Overall performance"]*100, 2)
def get_bias_ratios_df(self):
fairness_results = self.data_dict['Fairness results']
characteristic_list = []
fairness_ratio_list = []
for key, val in fairness_results.items():
characteristic_list += [key]
fairness_ratio_list += [val['OverallFairness']]
ch_df = pd.DataFrame({
'Characteristic': characteristic_list,
'Bias ratio': fairness_ratio_list
}).sort_values(by=['Characteristic'])
return ch_df
def get_global_perturbers_df(self):
global_perturber_families = self.data_dict['Perturber Families']
perf_pert_values = []
normalized_perf_pert_values = []
family_levels = []
family_names_list = []
levels_index_list = []
for item in global_perturber_families:
family_name = item['family name']
family_results = self.data_dict['Performance Robustness']['Perturber family wise results'][family_name]["PerformancePerturbers"]# TODO: change the structuer of post processing here
family_levels += item['levels']
original_perf = family_results[item['levels'][0]]
count = 0
for t_item in item['levels']:
perf_pert_values += [family_results[t_item]]
normalized_perf_pert_values += [family_results[t_item]/original_perf]
family_names_list += [family_name]
levels_index_list += [count]
count += 1
t_pert_df_global = pd.DataFrame({
'Perturbation level': family_levels,
'Performance': perf_pert_values,
'normalized performance': normalized_perf_pert_values,
'Perturbation family': family_names_list,
'Levels' : levels_index_list
})
t_pert_df_global['category'] = 'Overall'
return t_pert_df_global
def get_data_distribution(self, embedder_option):
embedder_perf_ci_table = self.data_dict['Performance results'][embedder_option]['CI_Table']
n_points = self.data_dict['n points']
category_share_of_data = {}
categories_list = []
share_of_data_list = []
n_points_list = []
for key, val in embedder_perf_ci_table.items():
categories_list += [val['category']]
share_of_data_list += [val['Share of Data']]
n_points_list += [int(val['Share of Data']*n_points/100)]
t_df = pd.DataFrame({
'Category': categories_list,
'Share of data': share_of_data_list,
'Number of points': n_points_list
})
return t_df
def get_fairness_confidence_interval_df(self, embedder_option):
embedder_fair_ci_table = self.data_dict['Fairness results'][embedder_option]['CI_Table']
categories_list = []
estimates_list = []
uppers_list = []
lowers_list = []
for key, val in embedder_fair_ci_table.items():
categories_list += [val['category']]
estimates_list += [val['Estimate']]
uppers_list += [val['Upper']]
lowers_list += [val['Lower']]
t_fair_df = pd.DataFrame({
'Category': categories_list,
'Estimate': estimates_list,
'Upper': uppers_list,
'Lower': lowers_list,
'Index': list(range(len(uppers_list)))
})
t_fair_df['Index'] = t_fair_df['Index'].astype(float)
t_fair_df['Diff upper'] = t_fair_df['Upper'] - t_fair_df['Estimate']
t_fair_df['Diff lower'] = t_fair_df['Estimate'] - t_fair_df['Lower']
return t_fair_df
def get_performance_robustness(self, embedder_option):
t_pert_df_global = self.get_global_perturbers_df()
global_perturber_families = self.data_dict['Perturber Families']
t_result = self.data_dict['Performance Robustness']['Embedder wise results'][embedder_option]
merged_dfs_list = []
t_pert_df_global_temps_list = []
family_names_list = []
# Embedder categories
for item in global_perturber_families:
family_name = item['family name']
dfs_list = []
count = 0
for t_item in item['levels']:
df = pd.DataFrame(t_result[t_item])
df['Perturber'] = t_item
df['Perturber family'] = family_name
df['Levels'] = count
dfs_list += [df]
count += 1
merged_df = pd.concat(dfs_list, axis=0)
merged_dfs_list += [merged_df]
family_names_list += [family_name]
t_pert_df_global_temp = t_pert_df_global[t_pert_df_global['Perturbation family'] == family_name].copy(deep=True)
t_pert_df_global_temps_list +=[t_pert_df_global_temp]
return {
'merged_dfs_list' : merged_dfs_list,
't_pert_df_global_temps_list' : t_pert_df_global_temps_list,
'family_names_list' : family_names_list
}