Spaces:
Running
Running
mmahesh873
commited on
Commit
•
92b387d
1
Parent(s):
dbd94bb
added utils
Browse files
utils.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
|
4 |
+
|
5 |
+
class ResultsProcessor:
|
6 |
+
def __init__(self, prompt_option, result_file, data_dict):
|
7 |
+
self.prompt_option = prompt_option
|
8 |
+
self.result_file = result_file
|
9 |
+
self.data_dict = data_dict
|
10 |
+
|
11 |
+
|
12 |
+
def get_overall_performance(self):
|
13 |
+
return round(self.data_dict["Overall performance"]*100, 2)
|
14 |
+
|
15 |
+
def get_bias_ratios_df(self):
|
16 |
+
fairness_results = self.data_dict['Fairness results']
|
17 |
+
|
18 |
+
characteristic_list = []
|
19 |
+
fairness_ratio_list = []
|
20 |
+
for key, val in fairness_results.items():
|
21 |
+
characteristic_list += [key]
|
22 |
+
fairness_ratio_list += [val['OverallFairness']]
|
23 |
+
|
24 |
+
ch_df = pd.DataFrame({
|
25 |
+
'Characteristic': characteristic_list,
|
26 |
+
'Bias ratio': fairness_ratio_list
|
27 |
+
}).sort_values(by=['Characteristic'])
|
28 |
+
return ch_df
|
29 |
+
|
30 |
+
def get_global_perturbers_df(self):
|
31 |
+
global_perturber_families = self.data_dict['Perturber Families']
|
32 |
+
perf_pert_values = []
|
33 |
+
normalized_perf_pert_values = []
|
34 |
+
family_levels = []
|
35 |
+
family_names_list = []
|
36 |
+
levels_index_list = []
|
37 |
+
for item in global_perturber_families:
|
38 |
+
family_name = item['family name']
|
39 |
+
family_results = self.data_dict['Performance Robustness']['Perturber family wise results'][family_name]["PerformancePerturbers"]# TODO: change the structuer of post processing here
|
40 |
+
family_levels += item['levels']
|
41 |
+
original_perf = family_results[item['levels'][0]]
|
42 |
+
count = 0
|
43 |
+
for t_item in item['levels']:
|
44 |
+
perf_pert_values += [family_results[t_item]]
|
45 |
+
normalized_perf_pert_values += [family_results[t_item]/original_perf]
|
46 |
+
family_names_list += [family_name]
|
47 |
+
levels_index_list += [count]
|
48 |
+
count += 1
|
49 |
+
|
50 |
+
t_pert_df_global = pd.DataFrame({
|
51 |
+
'Perturbation level': family_levels,
|
52 |
+
'Performance': perf_pert_values,
|
53 |
+
'normalized performance': normalized_perf_pert_values,
|
54 |
+
'Perturbation family': family_names_list,
|
55 |
+
'Levels' : levels_index_list
|
56 |
+
})
|
57 |
+
t_pert_df_global['category'] = 'Overall'
|
58 |
+
|
59 |
+
return t_pert_df_global
|
60 |
+
|
61 |
+
def get_data_distribution(self, embedder_option):
|
62 |
+
embedder_perf_ci_table = self.data_dict['Performance results'][embedder_option]['CI_Table']
|
63 |
+
n_points = self.data_dict['n points']
|
64 |
+
category_share_of_data = {}
|
65 |
+
categories_list = []
|
66 |
+
share_of_data_list = []
|
67 |
+
n_points_list = []
|
68 |
+
for key, val in embedder_perf_ci_table.items():
|
69 |
+
categories_list += [val['category']]
|
70 |
+
share_of_data_list += [val['Share of Data']]
|
71 |
+
n_points_list += [int(val['Share of Data']*n_points/100)]
|
72 |
+
|
73 |
+
t_df = pd.DataFrame({
|
74 |
+
'Category': categories_list,
|
75 |
+
'Share of data': share_of_data_list,
|
76 |
+
'Number of points': n_points_list
|
77 |
+
})
|
78 |
+
return t_df
|
79 |
+
|
80 |
+
def get_fairness_confidence_interval_df(self, embedder_option):
|
81 |
+
embedder_fair_ci_table = self.data_dict['Fairness results'][embedder_option]['CI_Table']
|
82 |
+
categories_list = []
|
83 |
+
estimates_list = []
|
84 |
+
uppers_list = []
|
85 |
+
lowers_list = []
|
86 |
+
for key, val in embedder_fair_ci_table.items():
|
87 |
+
categories_list += [val['category']]
|
88 |
+
estimates_list += [val['Estimate']]
|
89 |
+
uppers_list += [val['Upper']]
|
90 |
+
lowers_list += [val['Lower']]
|
91 |
+
|
92 |
+
t_fair_df = pd.DataFrame({
|
93 |
+
'Category': categories_list,
|
94 |
+
'Estimate': estimates_list,
|
95 |
+
'Upper': uppers_list,
|
96 |
+
'Lower': lowers_list,
|
97 |
+
'Index': list(range(len(uppers_list)))
|
98 |
+
})
|
99 |
+
t_fair_df['Index'] = t_fair_df['Index'].astype(float)
|
100 |
+
|
101 |
+
t_fair_df['Diff upper'] = t_fair_df['Upper'] - t_fair_df['Estimate']
|
102 |
+
t_fair_df['Diff lower'] = t_fair_df['Estimate'] - t_fair_df['Lower']
|
103 |
+
|
104 |
+
return t_fair_df
|
105 |
+
|
106 |
+
def get_performance_robustness(self, embedder_option):
|
107 |
+
t_pert_df_global = self.get_global_perturbers_df()
|
108 |
+
global_perturber_families = self.data_dict['Perturber Families']
|
109 |
+
t_result = self.data_dict['Performance Robustness']['Embedder wise results'][embedder_option]
|
110 |
+
merged_dfs_list = []
|
111 |
+
t_pert_df_global_temps_list = []
|
112 |
+
family_names_list = []
|
113 |
+
# Embedder categories
|
114 |
+
for item in global_perturber_families:
|
115 |
+
family_name = item['family name']
|
116 |
+
dfs_list = []
|
117 |
+
count = 0
|
118 |
+
for t_item in item['levels']:
|
119 |
+
df = pd.DataFrame(t_result[t_item])
|
120 |
+
df['Perturber'] = t_item
|
121 |
+
df['Perturber family'] = family_name
|
122 |
+
df['Levels'] = count
|
123 |
+
dfs_list += [df]
|
124 |
+
count += 1
|
125 |
+
merged_df = pd.concat(dfs_list, axis=0)
|
126 |
+
merged_dfs_list += [merged_df]
|
127 |
+
family_names_list += [family_name]
|
128 |
+
|
129 |
+
t_pert_df_global_temp = t_pert_df_global[t_pert_df_global['Perturbation family'] == family_name].copy(deep=True)
|
130 |
+
t_pert_df_global_temps_list +=[t_pert_df_global_temp]
|
131 |
+
return {
|
132 |
+
'merged_dfs_list' : merged_dfs_list,
|
133 |
+
't_pert_df_global_temps_list' : t_pert_df_global_temps_list,
|
134 |
+
'family_names_list' : family_names_list
|
135 |
+
}
|