Spaces:
Runtime error
Runtime error
import io | |
from threading import Thread | |
import time | |
import numpy as np | |
import gradio as gr | |
import torch | |
from pydub import AudioSegment | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from streamer import ParlerTTSStreamer | |
# Device and model setup | |
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
torch_dtype = torch.float16 if device != "cpu" else torch.float32 | |
repo_id = "parler-tts/parler_tts_mini_v0.1" | |
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H" | |
model = ParlerTTSForConditionalGeneration.from_pretrained( | |
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
SAMPLE_RATE = feature_extractor.sampling_rate | |
SEED = 42 | |
frame_rate = model.audio_encoder.config.frame_rate | |
# Helper to convert audio to MP3 | |
def numpy_to_mp3(audio_array, sampling_rate): | |
if np.issubdtype(audio_array.dtype, np.floating): | |
max_val = np.max(np.abs(audio_array)) | |
audio_array = (audio_array / max_val) * 32767 | |
audio_array = audio_array.astype(np.int16) | |
audio_segment = AudioSegment( | |
audio_array.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio_array.dtype.itemsize, | |
channels=1 | |
) | |
mp3_io = io.BytesIO() | |
audio_segment.export(mp3_io, format="mp3", bitrate="320k") | |
return mp3_io.getvalue() | |
# TTS Function using fixed text | |
def speak_fixed_text(): | |
text = "This is a demo of Parler-TTS generating a voice from fixed text input." | |
description = "A calm, clear female voice speaking in a natural tone." | |
description_tokens = tokenizer(description, return_tensors="pt").to(device) | |
prompt = tokenizer(text, return_tensors="pt").to(device) | |
play_steps = int(frame_rate * 2.0) | |
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) | |
generation_kwargs = dict( | |
input_ids=description_tokens.input_ids, | |
prompt_input_ids=prompt.input_ids, | |
streamer=streamer, | |
do_sample=True, | |
temperature=1.0, | |
min_new_tokens=10, | |
) | |
set_seed(SEED) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
start = time.time() | |
for new_audio in streamer: | |
print(f"Audio sample: {round(new_audio.shape[0] / SAMPLE_RATE, 2)} sec (elapsed {round(time.time() - start, 2)} sec)") | |
return numpy_to_mp3(new_audio, sampling_rate=SAMPLE_RATE) | |
# Minimal Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🔊 Text-to-Speech Demo") | |
output_audio = gr.Audio(label="Generated Audio", streaming=True, autoplay=True) | |
generate_btn = gr.Button("Generate Voice") | |
generate_btn.click(fn=speak_fixed_text, outputs=output_audio) | |
demo.launch() | |