import io from threading import Thread import time import numpy as np import gradio as gr import torch from pydub import AudioSegment from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed from parler_tts import ParlerTTSForConditionalGeneration from streamer import ParlerTTSStreamer # Device and model setup device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" torch_dtype = torch.float16 if device != "cpu" else torch.float32 repo_id = "parler-tts/parler_tts_mini_v0.1" jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H" model = ParlerTTSForConditionalGeneration.from_pretrained( jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ).to(device) tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 frame_rate = model.audio_encoder.config.frame_rate # Helper to convert audio to MP3 def numpy_to_mp3(audio_array, sampling_rate): if np.issubdtype(audio_array.dtype, np.floating): max_val = np.max(np.abs(audio_array)) audio_array = (audio_array / max_val) * 32767 audio_array = audio_array.astype(np.int16) audio_segment = AudioSegment( audio_array.tobytes(), frame_rate=sampling_rate, sample_width=audio_array.dtype.itemsize, channels=1 ) mp3_io = io.BytesIO() audio_segment.export(mp3_io, format="mp3", bitrate="320k") return mp3_io.getvalue() # TTS Function using fixed text def speak_fixed_text(): text = "This is a demo of Parler-TTS generating a voice from fixed text input." description = "A calm, clear female voice speaking in a natural tone." description_tokens = tokenizer(description, return_tensors="pt").to(device) prompt = tokenizer(text, return_tensors="pt").to(device) play_steps = int(frame_rate * 2.0) streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) generation_kwargs = dict( input_ids=description_tokens.input_ids, prompt_input_ids=prompt.input_ids, streamer=streamer, do_sample=True, temperature=1.0, min_new_tokens=10, ) set_seed(SEED) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() start = time.time() for new_audio in streamer: print(f"Audio sample: {round(new_audio.shape[0] / SAMPLE_RATE, 2)} sec (elapsed {round(time.time() - start, 2)} sec)") return numpy_to_mp3(new_audio, sampling_rate=SAMPLE_RATE) # Minimal Gradio UI with gr.Blocks() as demo: gr.Markdown("## 🔊 Text-to-Speech Demo") output_audio = gr.Audio(label="Generated Audio", streaming=True, autoplay=True) generate_btn = gr.Button("Generate Voice") generate_btn.click(fn=speak_fixed_text, outputs=output_audio) demo.launch()