Spaces:
Running
Running
import glob, time, os, re, logging | |
from toolbox import update_ui, trimmed_format_exc, gen_time_str, disable_auto_promotion | |
from toolbox import CatchException, report_exception, get_log_folder | |
from toolbox import write_history_to_file, promote_file_to_downloadzone | |
fast_debug = False | |
class PaperFileGroup(): | |
def __init__(self): | |
self.file_paths = [] | |
self.file_contents = [] | |
self.sp_file_contents = [] | |
self.sp_file_index = [] | |
self.sp_file_tag = [] | |
# count_token | |
from request_llms.bridge_all import model_info | |
enc = model_info["gpt-3.5-turbo"]['tokenizer'] | |
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) | |
self.get_token_num = get_token_num | |
def run_file_split(self, max_token_limit=1900): | |
""" | |
将长文本分离开来 | |
""" | |
for index, file_content in enumerate(self.file_contents): | |
if self.get_token_num(file_content) < max_token_limit: | |
self.sp_file_contents.append(file_content) | |
self.sp_file_index.append(index) | |
self.sp_file_tag.append(self.file_paths[index]) | |
else: | |
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit | |
segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit) | |
for j, segment in enumerate(segments): | |
self.sp_file_contents.append(segment) | |
self.sp_file_index.append(index) | |
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md") | |
logging.info('Segmentation: done') | |
def merge_result(self): | |
self.file_result = ["" for _ in range(len(self.file_paths))] | |
for r, k in zip(self.sp_file_result, self.sp_file_index): | |
self.file_result[k] += r | |
def write_result(self, language): | |
manifest = [] | |
for path, res in zip(self.file_paths, self.file_result): | |
dst_file = os.path.join(get_log_folder(), f'{gen_time_str()}.md') | |
with open(dst_file, 'w', encoding='utf8') as f: | |
manifest.append(dst_file) | |
f.write(res) | |
return manifest | |
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'): | |
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency | |
# <-------- 读取Markdown文件,删除其中的所有注释 ----------> | |
pfg = PaperFileGroup() | |
for index, fp in enumerate(file_manifest): | |
with open(fp, 'r', encoding='utf-8', errors='replace') as f: | |
file_content = f.read() | |
# 记录删除注释后的文本 | |
pfg.file_paths.append(fp) | |
pfg.file_contents.append(file_content) | |
# <-------- 拆分过长的Markdown文件 ----------> | |
pfg.run_file_split(max_token_limit=1500) | |
n_split = len(pfg.sp_file_contents) | |
# <-------- 多线程翻译开始 ----------> | |
if language == 'en->zh': | |
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" + | |
f"\n\n{frag}" for frag in pfg.sp_file_contents] | |
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag] | |
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)] | |
elif language == 'zh->en': | |
inputs_array = [f"This is a Markdown file, translate it into English, do not modify any existing Markdown commands:" + | |
f"\n\n{frag}" for frag in pfg.sp_file_contents] | |
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag] | |
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)] | |
else: | |
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" + | |
f"\n\n{frag}" for frag in pfg.sp_file_contents] | |
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag] | |
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)] | |
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | |
inputs_array=inputs_array, | |
inputs_show_user_array=inputs_show_user_array, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, | |
history_array=[[""] for _ in range(n_split)], | |
sys_prompt_array=sys_prompt_array, | |
# max_workers=5, # OpenAI所允许的最大并行过载 | |
scroller_max_len = 80 | |
) | |
try: | |
pfg.sp_file_result = [] | |
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]): | |
pfg.sp_file_result.append(gpt_say) | |
pfg.merge_result() | |
pfg.write_result(language) | |
except: | |
logging.error(trimmed_format_exc()) | |
# <-------- 整理结果,退出 ----------> | |
create_report_file_name = gen_time_str() + f"-chatgpt.md" | |
res = write_history_to_file(gpt_response_collection, file_basename=create_report_file_name) | |
promote_file_to_downloadzone(res, chatbot=chatbot) | |
history = gpt_response_collection | |
chatbot.append((f"{fp}完成了吗?", res)) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
def get_files_from_everything(txt, preference=''): | |
if txt == "": return False, None, None | |
success = True | |
if txt.startswith('http'): | |
import requests | |
from toolbox import get_conf | |
proxies = get_conf('proxies') | |
# 网络的远程文件 | |
if preference == 'Github': | |
logging.info('正在从github下载资源 ...') | |
if not txt.endswith('.md'): | |
# Make a request to the GitHub API to retrieve the repository information | |
url = txt.replace("https://github.com/", "https://api.github.com/repos/") + '/readme' | |
response = requests.get(url, proxies=proxies) | |
txt = response.json()['download_url'] | |
else: | |
txt = txt.replace("https://github.com/", "https://raw.githubusercontent.com/") | |
txt = txt.replace("/blob/", "/") | |
r = requests.get(txt, proxies=proxies) | |
download_local = f'{get_log_folder(plugin_name="批量Markdown翻译")}/raw-readme-{gen_time_str()}.md' | |
project_folder = f'{get_log_folder(plugin_name="批量Markdown翻译")}' | |
with open(download_local, 'wb+') as f: f.write(r.content) | |
file_manifest = [download_local] | |
elif txt.endswith('.md'): | |
# 直接给定文件 | |
file_manifest = [txt] | |
project_folder = os.path.dirname(txt) | |
elif os.path.exists(txt): | |
# 本地路径,递归搜索 | |
project_folder = txt | |
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.md', recursive=True)] | |
else: | |
project_folder = None | |
file_manifest = [] | |
success = False | |
return success, file_manifest, project_folder | |
def Markdown英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
disable_auto_promotion(chatbot) | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import tiktoken | |
except: | |
report_exception(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
history = [] # 清空历史,以免输入溢出 | |
success, file_manifest, project_folder = get_files_from_everything(txt, preference="Github") | |
if not success: | |
# 什么都没有 | |
if txt == "": txt = '空空如也的输入栏' | |
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
if len(file_manifest) == 0: | |
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh') | |
def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
disable_auto_promotion(chatbot) | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import tiktoken | |
except: | |
report_exception(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
history = [] # 清空历史,以免输入溢出 | |
success, file_manifest, project_folder = get_files_from_everything(txt) | |
if not success: | |
# 什么都没有 | |
if txt == "": txt = '空空如也的输入栏' | |
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
if len(file_manifest) == 0: | |
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en') | |
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
disable_auto_promotion(chatbot) | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import tiktoken | |
except: | |
report_exception(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
history = [] # 清空历史,以免输入溢出 | |
success, file_manifest, project_folder = get_files_from_everything(txt) | |
if not success: | |
# 什么都没有 | |
if txt == "": txt = '空空如也的输入栏' | |
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
if len(file_manifest) == 0: | |
report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") | |
language = plugin_kwargs.get("advanced_arg", 'Chinese') | |
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language) |