Spaces:
Running
Running
# encoding: utf-8 | |
# @Time : 2024/1/22 | |
# @Author : Kilig947 & binary husky | |
# @Descr : 兼容最新的智谱Ai | |
from toolbox import get_conf | |
from zhipuai import ZhipuAI | |
from toolbox import get_conf, encode_image, get_pictures_list | |
import logging, os | |
def input_encode_handler(inputs, llm_kwargs): | |
if llm_kwargs["most_recent_uploaded"].get("path"): | |
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"]) | |
md_encode = [] | |
for md_path in image_paths: | |
type_ = os.path.splitext(md_path)[1].replace(".", "") | |
type_ = "jpeg" if type_ == "jpg" else type_ | |
md_encode.append({"data": encode_image(md_path), "type": type_}) | |
return inputs, md_encode | |
class ZhipuChatInit: | |
def __init__(self): | |
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL") | |
if len(ZHIPUAI_MODEL) > 0: | |
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用,请在LLM_MODEL中配置') | |
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY) | |
self.model = '' | |
def __conversation_user(self, user_input: str, llm_kwargs): | |
if self.model not in ["glm-4v"]: | |
return {"role": "user", "content": user_input} | |
else: | |
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs) | |
what_i_have_asked = {"role": "user", "content": []} | |
what_i_have_asked['content'].append({"type": 'text', "text": user_input}) | |
if encode_img: | |
img_d = {"type": "image_url", | |
"image_url": {'url': encode_img}} | |
what_i_have_asked['content'].append(img_d) | |
return what_i_have_asked | |
def __conversation_history(self, history, llm_kwargs): | |
messages = [] | |
conversation_cnt = len(history) // 2 | |
if conversation_cnt: | |
for index in range(0, 2 * conversation_cnt, 2): | |
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs) | |
what_gpt_answer = { | |
"role": "assistant", | |
"content": history[index + 1] | |
} | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
return messages | |
def __conversation_message_payload(self, inputs, llm_kwargs, history, system_prompt): | |
messages = [] | |
if system_prompt: | |
messages.append({"role": "system", "content": system_prompt}) | |
self.model = llm_kwargs['llm_model'] | |
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history | |
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话 | |
response = self.zhipu_bro.chat.completions.create( | |
model=self.model, messages=messages, stream=True, | |
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p | |
top_p=llm_kwargs.get('top_p', 0.7) * 0.7, | |
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半 | |
) | |
return response | |
def generate_chat(self, inputs, llm_kwargs, history, system_prompt): | |
self.model = llm_kwargs['llm_model'] | |
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt) | |
bro_results = '' | |
for chunk in response: | |
bro_results += chunk.choices[0].delta.content | |
yield chunk.choices[0].delta.content, bro_results | |
if __name__ == '__main__': | |
zhipu = ZhipuChatInit() | |
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi') | |