Spaces:
Running
Running
""" | |
该文件中主要包含三个函数 | |
不具备多线程能力的函数: | |
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 | |
具备多线程调用能力的函数 | |
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑 | |
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程 | |
""" | |
import logging | |
import traceback | |
import importlib | |
import openai | |
import time | |
# 读取config.py文件中关于AZURE OPENAI API的信息 | |
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc | |
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \ | |
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY") | |
def get_full_error(chunk, stream_response): | |
""" | |
获取完整的从Openai返回的报错 | |
""" | |
while True: | |
try: | |
chunk += next(stream_response) | |
except: | |
break | |
return chunk | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
发送至azure openai api,流式获取输出。 | |
用于基础的对话功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
additional_fn代表点击的哪个按钮,按钮见functional.py | |
""" | |
print(llm_kwargs["llm_model"]) | |
if additional_fn is not None: | |
import core_functional | |
importlib.reload(core_functional) # 热更新prompt | |
core_functional = core_functional.get_core_functions() | |
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) | |
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] | |
raw_input = inputs | |
logging.info(f'[raw_input] {raw_input}') | |
chatbot.append((inputs, "")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 | |
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream) | |
history.append(inputs); history.append("") | |
retry = 0 | |
while True: | |
try: | |
openai.api_type = "azure" | |
openai.api_version = AZURE_API_VERSION | |
openai.api_base = AZURE_ENDPOINT | |
openai.api_key = AZURE_API_KEY | |
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break | |
except: | |
retry += 1 | |
chatbot[-1] = ((chatbot[-1][0], "获取response失败,重试中。。。")) | |
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" | |
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面 | |
if retry > MAX_RETRY: raise TimeoutError | |
gpt_replying_buffer = "" | |
is_head_of_the_stream = True | |
if stream: | |
stream_response = response | |
while True: | |
try: | |
chunk = next(stream_response) | |
except StopIteration: | |
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```' | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}") | |
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面 | |
return | |
if is_head_of_the_stream and (r'"object":"error"' not in chunk): | |
# 数据流的第一帧不携带content | |
is_head_of_the_stream = False; continue | |
if chunk: | |
#print(chunk) | |
try: | |
if "delta" in chunk["choices"][0]: | |
if chunk["choices"][0]["finish_reason"] == "stop": | |
logging.info(f'[response] {gpt_replying_buffer}') | |
break | |
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}" | |
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"] | |
history[-1] = gpt_replying_buffer | |
chatbot[-1] = (history[-2], history[-1]) | |
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面 | |
except Exception as e: | |
traceback.print_exc() | |
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面 | |
chunk = get_full_error(chunk, stream_response) | |
error_msg = chunk | |
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面 | |
return | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): | |
""" | |
发送至AZURE OPENAI API,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 | |
inputs: | |
是本次问询的输入 | |
sys_prompt: | |
系统静默prompt | |
llm_kwargs: | |
chatGPT的内部调优参数 | |
history: | |
是之前的对话列表 | |
observe_window = None: | |
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 | |
""" | |
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 | |
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) | |
retry = 0 | |
while True: | |
try: | |
openai.api_type = "azure" | |
openai.api_version = AZURE_API_VERSION | |
openai.api_base = AZURE_ENDPOINT | |
openai.api_key = AZURE_API_KEY | |
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break | |
except: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: raise TimeoutError | |
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
stream_response = response | |
result = '' | |
while True: | |
try: chunk = next(stream_response) | |
except StopIteration: | |
break | |
except: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
if len(chunk)==0: continue | |
if not chunk.startswith('data:'): | |
error_msg = get_full_error(chunk, stream_response) | |
if "reduce the length" in error_msg: | |
raise ConnectionAbortedError("AZURE OPENAI API拒绝了请求:" + error_msg) | |
else: | |
raise RuntimeError("AZURE OPENAI API拒绝了请求:" + error_msg) | |
if ('data: [DONE]' in chunk): break | |
delta = chunk["delta"] | |
if len(delta) == 0: break | |
if "role" in delta: continue | |
if "content" in delta: | |
result += delta["content"] | |
if not console_slience: print(delta["content"], end='') | |
if observe_window is not None: | |
# 观测窗,把已经获取的数据显示出去 | |
if len(observe_window) >= 1: observe_window[0] += delta["content"] | |
# 看门狗,如果超过期限没有喂狗,则终止 | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("用户取消了程序。") | |
else: raise RuntimeError("意外Json结构:"+delta) | |
if chunk['finish_reason'] == 'length': | |
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。") | |
return result | |
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream): | |
""" | |
整合所有信息,选择LLM模型,生成 azure openai api请求,为发送请求做准备 | |
""" | |
conversation_cnt = len(history) // 2 | |
messages = [{"role": "system", "content": system_prompt}] | |
if conversation_cnt: | |
for index in range(0, 2*conversation_cnt, 2): | |
what_i_have_asked = {} | |
what_i_have_asked["role"] = "user" | |
what_i_have_asked["content"] = history[index] | |
what_gpt_answer = {} | |
what_gpt_answer["role"] = "assistant" | |
what_gpt_answer["content"] = history[index+1] | |
if what_i_have_asked["content"] != "": | |
if what_gpt_answer["content"] == "": continue | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
else: | |
messages[-1]['content'] = what_gpt_answer['content'] | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = inputs | |
messages.append(what_i_ask_now) | |
payload = { | |
"model": llm_kwargs['llm_model'], | |
"messages": messages, | |
"temperature": llm_kwargs['temperature'], # 1.0, | |
"top_p": llm_kwargs['top_p'], # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
"engine": AZURE_ENGINE | |
} | |
try: | |
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........") | |
except: | |
print('输入中可能存在乱码。') | |
return payload | |