Spaces:
Running
Running
from functools import lru_cache | |
from toolbox import gen_time_str | |
from toolbox import promote_file_to_downloadzone | |
from toolbox import write_history_to_file, promote_file_to_downloadzone | |
from toolbox import get_conf | |
from toolbox import ProxyNetworkActivate | |
from colorful import * | |
import requests | |
import random | |
import copy | |
import os | |
import math | |
class GROBID_OFFLINE_EXCEPTION(Exception): pass | |
def get_avail_grobid_url(): | |
GROBID_URLS = get_conf('GROBID_URLS') | |
if len(GROBID_URLS) == 0: return None | |
try: | |
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡 | |
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/') | |
with ProxyNetworkActivate('Connect_Grobid'): | |
res = requests.get(_grobid_url+'/api/isalive') | |
if res.text=='true': return _grobid_url | |
else: return None | |
except: | |
return None | |
def parse_pdf(pdf_path, grobid_url): | |
import scipdf # pip install scipdf_parser | |
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/') | |
try: | |
with ProxyNetworkActivate('Connect_Grobid'): | |
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url) | |
except GROBID_OFFLINE_EXCEPTION: | |
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。") | |
except: | |
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。") | |
return article_dict | |
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files): | |
# -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-= | |
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None) | |
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot) | |
generated_conclusion_files.append(res_path) | |
# -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-= | |
translated_res_array = [] | |
# 记录当前的大章节标题: | |
last_section_name = "" | |
for index, value in enumerate(gpt_response_collection): | |
# 先挑选偶数序列号: | |
if index % 2 != 0: | |
# 先提取当前英文标题: | |
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0] | |
# 如果index是1的话,则直接使用first section name: | |
if cur_section_name != last_section_name: | |
cur_value = cur_section_name + '\n' | |
last_section_name = copy.deepcopy(cur_section_name) | |
else: | |
cur_value = "" | |
# 再做一个小修改:重新修改当前part的标题,默认用英文的 | |
cur_value += value | |
translated_res_array.append(cur_value) | |
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array, | |
file_basename = f"{gen_time_str()}-translated_only.md", | |
file_fullname = None, | |
auto_caption = False) | |
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot) | |
generated_conclusion_files.append(res_path) | |
return res_path | |
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG): | |
from crazy_functions.pdf_fns.report_gen_html import construct_html | |
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit | |
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency | |
prompt = "以下是一篇学术论文的基本信息:\n" | |
# title | |
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n' | |
# authors | |
authors = article_dict.get('authors', '无法获取 authors')[:100]; prompt += f'authors:{authors}\n\n' | |
# abstract | |
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n' | |
# command | |
prompt += f"请将题目和摘要翻译为{DST_LANG}。" | |
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ] | |
# 单线,获取文章meta信息 | |
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=prompt, | |
inputs_show_user=prompt, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, history=[], | |
sys_prompt="You are an academic paper reader。", | |
) | |
# 多线,翻译 | |
inputs_array = [] | |
inputs_show_user_array = [] | |
# get_token_num | |
from request_llms.bridge_all import model_info | |
enc = model_info[llm_kwargs['llm_model']]['tokenizer'] | |
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) | |
def break_down(txt): | |
raw_token_num = get_token_num(txt) | |
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT: | |
return [txt] | |
else: | |
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT | |
# find a smooth token limit to achieve even seperation | |
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT)) | |
token_limit_smooth = raw_token_num // count + count | |
return breakdown_text_to_satisfy_token_limit(txt, limit=token_limit_smooth, llm_model=llm_kwargs['llm_model']) | |
for section in article_dict.get('sections'): | |
if len(section['text']) == 0: continue | |
section_frags = break_down(section['text']) | |
for i, fragment in enumerate(section_frags): | |
heading = section['heading'] | |
if len(section_frags) > 1: heading += f' Part-{i+1}' | |
inputs_array.append( | |
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}" | |
) | |
inputs_show_user_array.append( | |
f"# {heading}\n\n{fragment}" | |
) | |
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | |
inputs_array=inputs_array, | |
inputs_show_user_array=inputs_show_user_array, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, | |
history_array=[meta for _ in inputs_array], | |
sys_prompt_array=[ | |
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array], | |
) | |
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-= | |
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files) | |
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-= | |
ch = construct_html() | |
orig = "" | |
trans = "" | |
gpt_response_collection_html = copy.deepcopy(gpt_response_collection) | |
for i,k in enumerate(gpt_response_collection_html): | |
if i%2==0: | |
gpt_response_collection_html[i] = inputs_show_user_array[i//2] | |
else: | |
# 先提取当前英文标题: | |
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0] | |
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i] | |
gpt_response_collection_html[i] = cur_value | |
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""] | |
final.extend(gpt_response_collection_html) | |
for i, k in enumerate(final): | |
if i%2==0: | |
orig = k | |
if i%2==1: | |
trans = k | |
ch.add_row(a=orig, b=trans) | |
create_report_file_name = f"{os.path.basename(fp)}.trans.html" | |
html_file = ch.save_file(create_report_file_name) | |
generated_conclusion_files.append(html_file) | |
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot) | |