Spaces:
Running
Running
from transformers import AutoModel, AutoTokenizer | |
import time | |
import importlib | |
from toolbox import update_ui, get_conf | |
from multiprocessing import Process, Pipe | |
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" | |
################################################################################# | |
class GetGLMHandle(Process): | |
def __init__(self): | |
super().__init__(daemon=True) | |
self.parent, self.child = Pipe() | |
self.chatglm_model = None | |
self.chatglm_tokenizer = None | |
self.info = "" | |
self.success = True | |
self.check_dependency() | |
self.start() | |
def check_dependency(self): | |
try: | |
import sentencepiece | |
self.info = "依赖检测通过" | |
self.success = True | |
except: | |
self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。" | |
self.success = False | |
def ready(self): | |
return self.chatglm_model is not None | |
def run(self): | |
# 第一次运行,加载参数 | |
retry = 0 | |
while True: | |
try: | |
if self.chatglm_model is None: | |
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) | |
device, = get_conf('LOCAL_MODEL_DEVICE') | |
if device=='cpu': | |
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() | |
else: | |
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() | |
self.chatglm_model = self.chatglm_model.eval() | |
break | |
else: | |
break | |
except: | |
retry += 1 | |
if retry > 3: | |
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。') | |
raise RuntimeError("不能正常加载ChatGLM的参数!") | |
# 进入任务等待状态 | |
while True: | |
kwargs = self.child.recv() | |
try: | |
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs): | |
self.child.send(response) | |
except: | |
self.child.send('[Local Message] Call ChatGLM fail.') | |
self.child.send('[Finish]') | |
def stream_chat(self, **kwargs): | |
self.parent.send(kwargs) | |
while True: | |
res = self.parent.recv() | |
if res != '[Finish]': | |
yield res | |
else: | |
break | |
return | |
global glm_handle | |
glm_handle = None | |
################################################################################# | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): | |
""" | |
多线程方法 | |
函数的说明请见 request_llm/bridge_all.py | |
""" | |
global glm_handle | |
if glm_handle is None: | |
glm_handle = GetGLMHandle() | |
observe_window[0] = load_message + "\n\n" + glm_handle.info | |
if not glm_handle.success: | |
error = glm_handle.info | |
glm_handle = None | |
raise RuntimeError(error) | |
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history | |
history_feedin = [] | |
for i in range(len(history)//2): | |
history_feedin.append(["What can I do?", sys_prompt] ) | |
history_feedin.append([history[2*i], history[2*i+1]] ) | |
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 | |
response = "" | |
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
observe_window[0] = response | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("程序终止。") | |
return response | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
单线程方法 | |
函数的说明请见 request_llm/bridge_all.py | |
""" | |
chatbot.append((inputs, "")) | |
global glm_handle | |
if glm_handle is None: | |
glm_handle = GetGLMHandle() | |
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info) | |
yield from update_ui(chatbot=chatbot, history=[]) | |
if not glm_handle.success: | |
glm_handle = None | |
return | |
if additional_fn is not None: | |
import core_functional | |
importlib.reload(core_functional) # 热更新prompt | |
core_functional = core_functional.get_core_functions() | |
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) | |
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] | |
history_feedin = [] | |
for i in range(len(history)//2): | |
history_feedin.append(["What can I do?", system_prompt] ) | |
history_feedin.append([history[2*i], history[2*i+1]] ) | |
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
chatbot[-1] = (inputs, response) | |
yield from update_ui(chatbot=chatbot, history=history) |