Spaces:
Running
Running
from transformers import AutoModel, AutoTokenizer | |
import time | |
import threading | |
import importlib | |
from toolbox import update_ui, get_conf, Singleton | |
from multiprocessing import Process, Pipe | |
def SingletonLocalLLM(cls): | |
""" | |
一个单实例装饰器 | |
""" | |
_instance = {} | |
def _singleton(*args, **kargs): | |
if cls not in _instance: | |
_instance[cls] = cls(*args, **kargs) | |
return _instance[cls] | |
elif _instance[cls].corrupted: | |
_instance[cls] = cls(*args, **kargs) | |
return _instance[cls] | |
else: | |
return _instance[cls] | |
return _singleton | |
class LocalLLMHandle(Process): | |
def __init__(self): | |
# ⭐主进程执行 | |
super().__init__(daemon=True) | |
self.corrupted = False | |
self.load_model_info() | |
self.parent, self.child = Pipe() | |
self.running = True | |
self._model = None | |
self._tokenizer = None | |
self.info = "" | |
self.check_dependency() | |
self.start() | |
self.threadLock = threading.Lock() | |
def load_model_info(self): | |
# 🏃♂️🏃♂️🏃♂️ 子进程执行 | |
raise NotImplementedError("Method not implemented yet") | |
self.model_name = "" | |
self.cmd_to_install = "" | |
def load_model_and_tokenizer(self): | |
""" | |
This function should return the model and the tokenizer | |
""" | |
# 🏃♂️🏃♂️🏃♂️ 子进程执行 | |
raise NotImplementedError("Method not implemented yet") | |
def llm_stream_generator(self, **kwargs): | |
# 🏃♂️🏃♂️🏃♂️ 子进程执行 | |
raise NotImplementedError("Method not implemented yet") | |
def try_to_import_special_deps(self, **kwargs): | |
""" | |
import something that will raise error if the user does not install requirement_*.txt | |
""" | |
# ⭐主进程执行 | |
raise NotImplementedError("Method not implemented yet") | |
def check_dependency(self): | |
# ⭐主进程执行 | |
try: | |
self.try_to_import_special_deps() | |
self.info = "依赖检测通过" | |
self.running = True | |
except: | |
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。" | |
self.running = False | |
def run(self): | |
# 🏃♂️🏃♂️🏃♂️ 子进程执行 | |
# 第一次运行,加载参数 | |
try: | |
self._model, self._tokenizer = self.load_model_and_tokenizer() | |
except: | |
self.running = False | |
from toolbox import trimmed_format_exc | |
self.child.send(f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n') | |
self.child.send('[FinishBad]') | |
raise RuntimeError(f"不能正常加载{self.model_name}的参数!") | |
while True: | |
# 进入任务等待状态 | |
kwargs = self.child.recv() | |
# 收到消息,开始请求 | |
try: | |
for response_full in self.llm_stream_generator(**kwargs): | |
self.child.send(response_full) | |
self.child.send('[Finish]') | |
# 请求处理结束,开始下一个循环 | |
except: | |
from toolbox import trimmed_format_exc | |
self.child.send(f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n') | |
self.child.send('[Finish]') | |
def stream_chat(self, **kwargs): | |
# ⭐主进程执行 | |
self.threadLock.acquire() | |
self.parent.send(kwargs) | |
while True: | |
res = self.parent.recv() | |
if res == '[Finish]': | |
break | |
if res == '[FinishBad]': | |
self.running = False | |
self.corrupted = True | |
break | |
else: | |
yield res | |
self.threadLock.release() | |
def get_local_llm_predict_fns(LLMSingletonClass, model_name): | |
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): | |
""" | |
⭐多线程方法 | |
函数的说明请见 request_llm/bridge_all.py | |
""" | |
_llm_handle = LLMSingletonClass() | |
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info | |
if not _llm_handle.running: raise RuntimeError(_llm_handle.info) | |
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history | |
history_feedin = [] | |
history_feedin.append([sys_prompt, "Certainly!"]) | |
for i in range(len(history)//2): | |
history_feedin.append([history[2*i], history[2*i+1]] ) | |
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 | |
response = "" | |
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
if len(observe_window) >= 1: | |
observe_window[0] = response | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。") | |
return response | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
⭐单线程方法 | |
函数的说明请见 request_llm/bridge_all.py | |
""" | |
chatbot.append((inputs, "")) | |
_llm_handle = LLMSingletonClass() | |
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info) | |
yield from update_ui(chatbot=chatbot, history=[]) | |
if not _llm_handle.running: raise RuntimeError(_llm_handle.info) | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) | |
# 处理历史信息 | |
history_feedin = [] | |
history_feedin.append([system_prompt, "Certainly!"]) | |
for i in range(len(history)//2): | |
history_feedin.append([history[2*i], history[2*i+1]] ) | |
# 开始接收回复 | |
response = f"[Local Message]: 等待{model_name}响应中 ..." | |
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
chatbot[-1] = (inputs, response) | |
yield from update_ui(chatbot=chatbot, history=history) | |
# 总结输出 | |
if response == f"[Local Message]: 等待{model_name}响应中 ...": | |
response = f"[Local Message]: {model_name}响应异常 ..." | |
history.extend([inputs, response]) | |
yield from update_ui(chatbot=chatbot, history=history) | |
return predict_no_ui_long_connection, predict |