ResNet50 / app.py
akhaliq's picture
akhaliq HF staff
Update app.py
c64a577
import torch
import gradio as gr
import torchvision.transforms as transforms
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
resnet50.eval().to(device)
def inference(img):
img_transforms = transforms.Compose(
[transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]
)
img = img_transforms(img)
with torch.no_grad():
# mean and std are not multiplied by 255 as they are in training script
# torch dataloader reads data into bytes whereas loading directly
# through PIL creates a tensor with floats in [0,1] range
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
img = img.float()
img = img.unsqueeze(0).sub_(mean).div_(std)
batch = torch.cat(
[img]
).to(device)
with torch.no_grad():
output = torch.nn.functional.softmax(resnet50(batch), dim=1)
results = utils.pick_n_best(predictions=output, n=5)
return results
title="ResNet50"
description="Gradio demo for ResNet50, ResNet50 model trained with mixed precision using Tensor Cores. To use it, simply upload your image or click on one of the examples below. Read more at the links below"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5'>Github Repo</a></p>"
examples=[['food.jpeg']]
gr.Interface(inference,gr.inputs.Image(type="pil"),"text",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)