Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,9 @@ utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_
|
|
10 |
resnet50.eval().to(device)
|
11 |
|
12 |
def inference(img):
|
13 |
-
|
14 |
img_transforms = transforms.Compose(
|
15 |
[transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]
|
16 |
)
|
17 |
-
|
18 |
img = img_transforms(img)
|
19 |
with torch.no_grad():
|
20 |
# mean and std are not multiplied by 255 as they are in training script
|
@@ -29,7 +27,7 @@ def inference(img):
|
|
29 |
[img]
|
30 |
).to(device)
|
31 |
|
32 |
-
|
33 |
output = torch.nn.functional.softmax(resnet50(batch), dim=1)
|
34 |
|
35 |
results = utils.pick_n_best(predictions=output, n=5)
|
|
|
10 |
resnet50.eval().to(device)
|
11 |
|
12 |
def inference(img):
|
|
|
13 |
img_transforms = transforms.Compose(
|
14 |
[transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]
|
15 |
)
|
|
|
16 |
img = img_transforms(img)
|
17 |
with torch.no_grad():
|
18 |
# mean and std are not multiplied by 255 as they are in training script
|
|
|
27 |
[img]
|
28 |
).to(device)
|
29 |
|
30 |
+
with torch.no_grad():
|
31 |
output = torch.nn.functional.softmax(resnet50(batch), dim=1)
|
32 |
|
33 |
results = utils.pick_n_best(predictions=output, n=5)
|