Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/phi-2", torch_dtype=torch.float32, device_map="auto", trust_remote_code=True | |
) | |
# Streamlit app | |
st.title("Fake news Generation with Transformers Microsoft phi-2") | |
st.image("https://raw.githubusercontent.com/noorkhokhar99/NewsGuardian/main/logo.jpeg") | |
# User input | |
prompt = st.text_area("Enter your prompt:", "This news is real or fake; you get results from here NewsGuardian") | |
# Generate output | |
if st.button("Generate"): | |
with torch.no_grad(): | |
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") | |
output_ids = model.generate( | |
token_ids.to(model.device), | |
max_new_tokens=20, | |
do_sample=True, | |
temperature=0.1 | |
) | |
output = tokenizer.decode(output_ids[0][token_ids.size(1):]) | |
st.text("Generated Output:") | |
st.write(output) | |