Spaces:
Running
Running
Add full logging
Browse files
main.py
CHANGED
@@ -17,6 +17,18 @@ from prompts import CODING_ASSISTANT_PROMPT, NEWS_ASSISTANT_PROMPT, generate_new
|
|
17 |
from fastapi_cache import FastAPICache
|
18 |
from fastapi_cache.backends.inmemory import InMemoryBackend
|
19 |
from fastapi_cache.decorator import cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
app = FastAPI()
|
22 |
|
@@ -69,6 +81,7 @@ class NewsQueryModel(BaseModel):
|
|
69 |
|
70 |
@lru_cache()
|
71 |
def get_api_keys():
|
|
|
72 |
return {
|
73 |
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
|
74 |
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
|
@@ -91,6 +104,7 @@ def calculate_tokens(msgs):
|
|
91 |
return sum(len(encoding.encode(str(m))) for m in msgs)
|
92 |
|
93 |
def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500):
|
|
|
94 |
while calculate_tokens(messages) > (8000 - max_output_tokens):
|
95 |
if len(messages) > max_llm_history:
|
96 |
messages = [messages[0]] + messages[-max_llm_history:]
|
@@ -98,6 +112,7 @@ def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, m
|
|
98 |
max_llm_history -= 1
|
99 |
if max_llm_history < 2:
|
100 |
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
|
|
|
101 |
raise HTTPException(status_code=400, detail=error_message)
|
102 |
|
103 |
try:
|
@@ -117,11 +132,14 @@ def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, m
|
|
117 |
|
118 |
# After streaming, add the full response to the conversation history
|
119 |
messages.append({"role": "assistant", "content": full_response})
|
|
|
120 |
except Exception as e:
|
|
|
121 |
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
|
122 |
|
123 |
async def verify_api_key(api_key: str = Security(api_key_header)):
|
124 |
if api_key != API_KEY:
|
|
|
125 |
raise HTTPException(status_code=403, detail="Could not validate credentials")
|
126 |
return api_key
|
127 |
|
@@ -129,6 +147,7 @@ async def verify_api_key(api_key: str = Security(api_key_header)):
|
|
129 |
DB_PATH = '/app/data/conversations.db'
|
130 |
|
131 |
def init_db():
|
|
|
132 |
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
|
133 |
conn = sqlite3.connect(DB_PATH)
|
134 |
c = conn.cursor()
|
@@ -141,19 +160,23 @@ def init_db():
|
|
141 |
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
142 |
conn.commit()
|
143 |
conn.close()
|
|
|
144 |
|
145 |
init_db()
|
146 |
|
147 |
def update_db(user_id, conversation_id, message, response):
|
|
|
148 |
conn = sqlite3.connect(DB_PATH)
|
149 |
c = conn.cursor()
|
150 |
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
|
151 |
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
|
152 |
conn.commit()
|
153 |
conn.close()
|
|
|
154 |
|
155 |
async def clear_inactive_conversations():
|
156 |
while True:
|
|
|
157 |
current_time = time.time()
|
158 |
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
|
159 |
if current_time - last_time > 1800] # 30 minutes
|
@@ -162,10 +185,12 @@ async def clear_inactive_conversations():
|
|
162 |
del conversations[conv_id]
|
163 |
if conv_id in last_activity:
|
164 |
del last_activity[conv_id]
|
|
|
165 |
await asyncio.sleep(60) # Check every minute
|
166 |
|
167 |
@app.on_event("startup")
|
168 |
async def startup_event():
|
|
|
169 |
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
|
170 |
asyncio.create_task(clear_inactive_conversations())
|
171 |
|
@@ -183,6 +208,7 @@ async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks,
|
|
183 |
- google/gemma-2-27b-it
|
184 |
Requires API Key authentication via X-API-Key header.
|
185 |
"""
|
|
|
186 |
if query.conversation_id not in conversations:
|
187 |
conversations[query.conversation_id] = [
|
188 |
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
|
@@ -200,12 +226,14 @@ async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks,
|
|
200 |
full_response += content
|
201 |
yield content
|
202 |
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
|
|
|
203 |
|
204 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
205 |
|
206 |
# New functions for news assistant
|
207 |
|
208 |
def internet_search(query, type = "web", num_results=20):
|
|
|
209 |
if type == "web":
|
210 |
url = "https://api.search.brave.com/res/v1/web/search"
|
211 |
else:
|
@@ -221,6 +249,7 @@ def internet_search(query, type = "web", num_results=20):
|
|
221 |
response = requests.get(url, headers=headers, params=params)
|
222 |
|
223 |
if response.status_code != 200:
|
|
|
224 |
return []
|
225 |
|
226 |
if type == "web":
|
@@ -240,17 +269,21 @@ def internet_search(query, type = "web", num_results=20):
|
|
240 |
}
|
241 |
processed_results.append(result)
|
242 |
|
|
|
243 |
return processed_results[:num_results]
|
244 |
|
245 |
@lru_cache(maxsize=100)
|
246 |
def cached_internet_search(query: str):
|
|
|
247 |
return internet_search(query, type = "news")
|
248 |
|
249 |
|
250 |
def analyze_news(query):
|
|
|
251 |
news_data = cached_internet_search(query)
|
252 |
|
253 |
if not news_data:
|
|
|
254 |
return "Failed to fetch news data.", []
|
255 |
|
256 |
# Prepare the prompt for the AI
|
@@ -262,6 +295,7 @@ def analyze_news(query):
|
|
262 |
{"role": "user", "content": prompt}
|
263 |
]
|
264 |
|
|
|
265 |
return messages
|
266 |
|
267 |
@app.post("/news-assistant")
|
@@ -270,15 +304,18 @@ async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_ap
|
|
270 |
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
|
271 |
Requires API Key authentication via X-API-Key header.
|
272 |
"""
|
|
|
273 |
messages = analyze_news(query.query)
|
274 |
|
275 |
if not messages:
|
|
|
276 |
raise HTTPException(status_code=500, detail="Failed to fetch news data")
|
277 |
|
278 |
def process_response():
|
279 |
for content in chat_with_llama_stream(messages, model=query.model_id):
|
280 |
yield content
|
281 |
-
|
|
|
282 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
283 |
|
284 |
class SearchQueryModel(BaseModel):
|
@@ -296,9 +333,11 @@ class SearchQueryModel(BaseModel):
|
|
296 |
}
|
297 |
|
298 |
def analyze_search_results(query):
|
|
|
299 |
search_data = internet_search(query, type="web")
|
300 |
|
301 |
if not search_data:
|
|
|
302 |
return "Failed to fetch search data.", []
|
303 |
|
304 |
# Prepare the prompt for the AI
|
@@ -309,6 +348,7 @@ def analyze_search_results(query):
|
|
309 |
{"role": "user", "content": prompt}
|
310 |
]
|
311 |
|
|
|
312 |
return messages
|
313 |
|
314 |
@app.post("/search-assistant")
|
@@ -317,17 +357,21 @@ async def search_assistant(query: SearchQueryModel, api_key: str = Depends(verif
|
|
317 |
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
|
318 |
Requires API Key authentication via X-API-Key header.
|
319 |
"""
|
|
|
320 |
messages = analyze_search_results(query.query)
|
321 |
|
322 |
if not messages:
|
|
|
323 |
raise HTTPException(status_code=500, detail="Failed to fetch search data")
|
324 |
|
325 |
def process_response():
|
326 |
for content in chat_with_llama_stream(messages, model=query.model_id):
|
327 |
yield content
|
|
|
328 |
|
329 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
330 |
|
331 |
if __name__ == "__main__":
|
332 |
import uvicorn
|
|
|
333 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
17 |
from fastapi_cache import FastAPICache
|
18 |
from fastapi_cache.backends.inmemory import InMemoryBackend
|
19 |
from fastapi_cache.decorator import cache
|
20 |
+
import logging
|
21 |
+
|
22 |
+
# Configure logging
|
23 |
+
logging.basicConfig(
|
24 |
+
level=logging.INFO,
|
25 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
26 |
+
handlers=[
|
27 |
+
logging.FileHandler("app.log"),
|
28 |
+
logging.StreamHandler()
|
29 |
+
]
|
30 |
+
)
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
|
33 |
app = FastAPI()
|
34 |
|
|
|
81 |
|
82 |
@lru_cache()
|
83 |
def get_api_keys():
|
84 |
+
logger.info("Loading API keys")
|
85 |
return {
|
86 |
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
|
87 |
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
|
|
|
104 |
return sum(len(encoding.encode(str(m))) for m in msgs)
|
105 |
|
106 |
def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500):
|
107 |
+
logger.info(f"Starting chat with model: {model}")
|
108 |
while calculate_tokens(messages) > (8000 - max_output_tokens):
|
109 |
if len(messages) > max_llm_history:
|
110 |
messages = [messages[0]] + messages[-max_llm_history:]
|
|
|
112 |
max_llm_history -= 1
|
113 |
if max_llm_history < 2:
|
114 |
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
|
115 |
+
logger.error(error_message)
|
116 |
raise HTTPException(status_code=400, detail=error_message)
|
117 |
|
118 |
try:
|
|
|
132 |
|
133 |
# After streaming, add the full response to the conversation history
|
134 |
messages.append({"role": "assistant", "content": full_response})
|
135 |
+
logger.info("Chat completed successfully")
|
136 |
except Exception as e:
|
137 |
+
logger.error(f"Error in model response: {str(e)}")
|
138 |
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
|
139 |
|
140 |
async def verify_api_key(api_key: str = Security(api_key_header)):
|
141 |
if api_key != API_KEY:
|
142 |
+
logger.warning("Invalid API key used")
|
143 |
raise HTTPException(status_code=403, detail="Could not validate credentials")
|
144 |
return api_key
|
145 |
|
|
|
147 |
DB_PATH = '/app/data/conversations.db'
|
148 |
|
149 |
def init_db():
|
150 |
+
logger.info("Initializing database")
|
151 |
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
|
152 |
conn = sqlite3.connect(DB_PATH)
|
153 |
c = conn.cursor()
|
|
|
160 |
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
161 |
conn.commit()
|
162 |
conn.close()
|
163 |
+
logger.info("Database initialized successfully")
|
164 |
|
165 |
init_db()
|
166 |
|
167 |
def update_db(user_id, conversation_id, message, response):
|
168 |
+
logger.info(f"Updating database for conversation: {conversation_id}")
|
169 |
conn = sqlite3.connect(DB_PATH)
|
170 |
c = conn.cursor()
|
171 |
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
|
172 |
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
|
173 |
conn.commit()
|
174 |
conn.close()
|
175 |
+
logger.info("Database updated successfully")
|
176 |
|
177 |
async def clear_inactive_conversations():
|
178 |
while True:
|
179 |
+
logger.info("Clearing inactive conversations")
|
180 |
current_time = time.time()
|
181 |
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
|
182 |
if current_time - last_time > 1800] # 30 minutes
|
|
|
185 |
del conversations[conv_id]
|
186 |
if conv_id in last_activity:
|
187 |
del last_activity[conv_id]
|
188 |
+
logger.info(f"Cleared {len(inactive_convos)} inactive conversations")
|
189 |
await asyncio.sleep(60) # Check every minute
|
190 |
|
191 |
@app.on_event("startup")
|
192 |
async def startup_event():
|
193 |
+
logger.info("Starting up the application")
|
194 |
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
|
195 |
asyncio.create_task(clear_inactive_conversations())
|
196 |
|
|
|
208 |
- google/gemma-2-27b-it
|
209 |
Requires API Key authentication via X-API-Key header.
|
210 |
"""
|
211 |
+
logger.info(f"Received coding assistant query: {query.user_query}")
|
212 |
if query.conversation_id not in conversations:
|
213 |
conversations[query.conversation_id] = [
|
214 |
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
|
|
|
226 |
full_response += content
|
227 |
yield content
|
228 |
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
|
229 |
+
logger.info(f"Completed coding assistant response for query: {query.user_query}")
|
230 |
|
231 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
232 |
|
233 |
# New functions for news assistant
|
234 |
|
235 |
def internet_search(query, type = "web", num_results=20):
|
236 |
+
logger.info(f"Performing internet search for query: {query}, type: {type}")
|
237 |
if type == "web":
|
238 |
url = "https://api.search.brave.com/res/v1/web/search"
|
239 |
else:
|
|
|
249 |
response = requests.get(url, headers=headers, params=params)
|
250 |
|
251 |
if response.status_code != 200:
|
252 |
+
logger.error(f"Failed to fetch search results. Status code: {response.status_code}")
|
253 |
return []
|
254 |
|
255 |
if type == "web":
|
|
|
269 |
}
|
270 |
processed_results.append(result)
|
271 |
|
272 |
+
logger.info(f"Retrieved {len(processed_results)} search results")
|
273 |
return processed_results[:num_results]
|
274 |
|
275 |
@lru_cache(maxsize=100)
|
276 |
def cached_internet_search(query: str):
|
277 |
+
logger.info(f"Performing cached internet search for query: {query}")
|
278 |
return internet_search(query, type = "news")
|
279 |
|
280 |
|
281 |
def analyze_news(query):
|
282 |
+
logger.info(f"Analyzing news for query: {query}")
|
283 |
news_data = cached_internet_search(query)
|
284 |
|
285 |
if not news_data:
|
286 |
+
logger.error("Failed to fetch news data")
|
287 |
return "Failed to fetch news data.", []
|
288 |
|
289 |
# Prepare the prompt for the AI
|
|
|
295 |
{"role": "user", "content": prompt}
|
296 |
]
|
297 |
|
298 |
+
logger.info("News analysis completed")
|
299 |
return messages
|
300 |
|
301 |
@app.post("/news-assistant")
|
|
|
304 |
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
|
305 |
Requires API Key authentication via X-API-Key header.
|
306 |
"""
|
307 |
+
logger.info(f"Received news assistant query: {query.query}")
|
308 |
messages = analyze_news(query.query)
|
309 |
|
310 |
if not messages:
|
311 |
+
logger.error("Failed to fetch news data")
|
312 |
raise HTTPException(status_code=500, detail="Failed to fetch news data")
|
313 |
|
314 |
def process_response():
|
315 |
for content in chat_with_llama_stream(messages, model=query.model_id):
|
316 |
yield content
|
317 |
+
logger.info(f"Completed news assistant response for query: {query.query}")
|
318 |
+
|
319 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
320 |
|
321 |
class SearchQueryModel(BaseModel):
|
|
|
333 |
}
|
334 |
|
335 |
def analyze_search_results(query):
|
336 |
+
logger.info(f"Analyzing search results for query: {query}")
|
337 |
search_data = internet_search(query, type="web")
|
338 |
|
339 |
if not search_data:
|
340 |
+
logger.error("Failed to fetch search data")
|
341 |
return "Failed to fetch search data.", []
|
342 |
|
343 |
# Prepare the prompt for the AI
|
|
|
348 |
{"role": "user", "content": prompt}
|
349 |
]
|
350 |
|
351 |
+
logger.info("Search results analysis completed")
|
352 |
return messages
|
353 |
|
354 |
@app.post("/search-assistant")
|
|
|
357 |
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
|
358 |
Requires API Key authentication via X-API-Key header.
|
359 |
"""
|
360 |
+
logger.info(f"Received search assistant query: {query.query}")
|
361 |
messages = analyze_search_results(query.query)
|
362 |
|
363 |
if not messages:
|
364 |
+
logger.error("Failed to fetch search data")
|
365 |
raise HTTPException(status_code=500, detail="Failed to fetch search data")
|
366 |
|
367 |
def process_response():
|
368 |
for content in chat_with_llama_stream(messages, model=query.model_id):
|
369 |
yield content
|
370 |
+
logger.info(f"Completed search assistant response for query: {query.query}")
|
371 |
|
372 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
373 |
|
374 |
if __name__ == "__main__":
|
375 |
import uvicorn
|
376 |
+
logger.info("Starting the application")
|
377 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|