audio_chat / main.py
pvanand's picture
Update main.py
02ddbf6 verified
raw
history blame
17 kB
import re
import os
from enum import Enum
from uuid import uuid4
import base64
import requests
from io import BytesIO
import time
import asyncio
import logging
import sqlite3
import tiktoken
from uuid import uuid4
from functools import lru_cache
from typing import Optional, List, Dict, Literal
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks, Query, Header
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, Field
from openai import OpenAI
# ============================================================================
# Configuration and Setup
# ============================================================================
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# FastAPI app setup
app = FastAPI()
# API key configuration
API_KEY_NAME = "X-API-Key"
PEXELS_API_KEY = os.environ["PEXELS_API_KEY"]
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
# Model definitions
ModelID = Literal[
"openai/gpt-4o-mini",
"meta-llama/llama-3-70b-instruct",
"anthropic/claude-3.5-sonnet",
"deepseek/deepseek-coder",
"anthropic/claude-3-haiku",
"openai/gpt-3.5-turbo-instruct",
"qwen/qwen-72b-chat",
"google/gemma-2-27b-it"
]
# Pydantic models
class LLMAgentQueryModel(BaseModel):
prompt: str = Field(..., description="User's query or prompt")
system_message: Optional[str] = Field(None, description="Custom system message for the conversation")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"prompt": "How do I implement a binary search in Python?",
"system_message": "You are a helpful coding assistant.",
"model_id": "meta-llama/llama-3-70b-instruct",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
# API key and client setup
@lru_cache()
def get_api_keys():
logger.info("Loading API keys")
return {
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
}
api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}
# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
# ============================================================================
# Database Functions
# ============================================================================
DB_PATH = '/app/data/conversations.db'
def init_db():
logger.info("Initializing database")
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS conversations
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
conversation_id TEXT,
message TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
logger.info("Database initialized successfully")
def update_db(user_id, conversation_id, message, response):
logger.info(f"Updating database for conversation: {conversation_id}")
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
conn.commit()
conn.close()
logger.info("Database updated successfully")
# ============================================================================
# Utility Functions
# ============================================================================
def extract_data_from_tag(input_string, tag):
# Create the regex pattern
pattern = f'<{tag}.*?>(.*?)</{tag}>'
# Find all matches
matches = re.findall(pattern, input_string, re.DOTALL)
# If matches are found, return them joined by newlines
if matches:
out = '\n'.join(match.strip() for match in matches)
return out
else:
return input_string
def calculate_tokens(msgs):
return sum(len(encoding.encode(str(m))) for m in msgs)
def limit_conversation_history(conversation: List[Dict[str, str]], max_tokens: int = 7500) -> List[Dict[str, str]]:
"""Limit the conversation history to a maximum number of tokens."""
limited_conversation = []
current_tokens = 0
for message in reversed(conversation):
message_tokens = calculate_tokens([message])
if current_tokens + message_tokens > max_tokens:
break
limited_conversation.insert(0, message)
current_tokens += message_tokens
return limited_conversation
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
logger.warning("Invalid API key used")
raise HTTPException(status_code=403, detail="Could not validate credentials")
return api_key
# ============================================================================
# LLM Interaction Functions
# ============================================================================
def chat_with_llama_stream(messages, model="meta-llama/llama-3-70b-instruct", max_output_tokens=2500):
logger.info(f"Starting chat with model: {model}")
try:
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_output_tokens,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
yield content
# After streaming, add the full response to the conversation history
messages.append({"role": "assistant", "content": full_response})
logger.info("Chat completed successfully")
except Exception as e:
logger.error(f"Error in model response: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
# ============================================================================
# Background Tasks
# ============================================================================
async def clear_inactive_conversations():
while True:
logger.info("Clearing inactive conversations")
current_time = time.time()
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
if current_time - last_time > 1800] # 30 minutes
for conv_id in inactive_convos:
if conv_id in conversations:
del conversations[conv_id]
if conv_id in last_activity:
del last_activity[conv_id]
await asyncio.sleep(600) # Check every hour
# ============================================================================
# FastAPI Events and Endpoints
# ============================================================================
@app.on_event("startup")
async def startup_event():
logger.info("Starting up the application")
init_db()
asyncio.create_task(clear_inactive_conversations())
@app.post("/llm-agent")
async def llm_agent(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
Accepts custom system messages and allows selection of different models.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received LLM agent query: {query.prompt}")
# Generate a new conversation ID if not provided
if not query.conversation_id:
query.conversation_id = str(uuid4())
# Initialize or retrieve conversation history
if query.conversation_id not in conversations:
system_message = query.system_message or "You are a helpful assistant."
conversations[query.conversation_id] = [
{"role": "system", "content": system_message}
]
elif query.system_message:
# Update system message if provided
conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}
# Add user's prompt to conversation history
conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = limit_conversation_history(conversations[query.conversation_id])
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
logger.info(f"Completed LLM agent response for query: {query.prompt}")
return StreamingResponse(process_response(), media_type="text/event-stream")
import edge_tts
import io
@app.get("/tts")
async def text_to_speech(
text: str = Query(..., description="Text to convert to speech"),
voice: str = Query(default="en-GB-SoniaNeural", description="Voice to use for speech")
):
communicate = edge_tts.Communicate(text, voice)
async def generate():
async for chunk in communicate.stream():
if chunk["type"] == "audio":
yield chunk["data"]
return StreamingResponse(generate(), media_type="audio/mpeg")
# ============================================================================
# PPT AGENT
# ============================================================================
class PresentationChatModel(BaseModel):
prompt: str = Field(..., description="User's query or prompt")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"prompt": "Help me create a presentation for my healthy snacks startup",
"model_id": "openai/gpt-4o-mini",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
# Enum for output formats
class OutputFormatEnum(str, Enum):
html = "html"
pdf = "pdf"
pptx = "pptx"
# Class model for presentation data
class PresentationModel(BaseModel):
markdown: str
output_format: OutputFormatEnum = OutputFormatEnum.html
def get_pexels_image(query):
default_img_url = "https://images.pexels.com/photos/593158/pexels-photo-593158.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2"
url = f"https://api.pexels.com/v1/search?query={query}&per_page=1"
headers = {"Authorization": PEXELS_API_KEY}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if data["total_results"] > 0:
return data["photos"][0]["src"]["medium"]
return default_img_url
except:
return default_img_url
def replace_image_keywords(text):
def replace_match(match):
bg_params = match.group(1)
keyword = re.sub(r'[^\w\s]', ' ', match.group(2)).strip()
image_url = get_pexels_image(keyword)
return f"![bg {bg_params}]({image_url})"
pattern = r'!\[bg (.*?)\]\((.*?)\)'
return re.sub(pattern, replace_match, text)
def convert_markdown_marp(markdown, output_format='html'):
API_URL = "https://pvanand-marpit-backend.hf.space/convert"
if output_format not in ['html', 'pdf', 'pptx']:
raise ValueError(f"Invalid output format. Supported formats are: html, pdf, pptx")
data = {
"markdown": markdown,
"outputFormat": output_format,
"options": []
}
try:
response = requests.post(API_URL, json=data, timeout=30)
response.raise_for_status()
return response.content
except requests.exceptions.RequestException as e:
logger.error(f"An error occurred while connecting to the API: {e}")
return None
@app.post("/convert-md-to-presentation")
async def create_presentation(data: PresentationModel):
if not data.markdown:
raise HTTPException(status_code=400, detail="Please provide Markdown text.")
markdown_with_images = replace_image_keywords(extract_data_from_tag(markdown, "marp_presentation"))
result = convert_markdown_marp(markdown_with_images, output_format)
if result:
if output_format == 'html':
return {"html": result.decode()}
elif output_format == 'pdf':
return StreamingResponse(BytesIO(result), media_type="application/pdf")
elif output_format == 'pptx':
return StreamingResponse(BytesIO(result), media_type="application/vnd.openxmlformats-officedocument.presentationml.presentation")
else:
raise HTTPException(status_code=500, detail="Failed to create presentation.")
@app.post("/presentation-agent")
async def presentation_chat(query: PresentationChatModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Presentation chat endpoint that generates a presentation based on user queries.
Uses the llm_agent function and returns both markdown and HTML output.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received presentation chat query: {query.prompt}")
# Create a new LLMAgentQueryModel with a specific system message for presentation generation
llm_query = LLMAgentQueryModel(
prompt=query.prompt,
conversation_id=query.conversation_id,
system_message="You are a presentation creation assistant. Generate a Marp-formatted presentation based on the user's request. Use the Marp format provided earlier.",
model_id=query.model_id,
user_id=query.user_id
)
# Use the llm_agent function to generate the presentation content
response_stream = await llm_agent(llm_query, background_tasks, api_key)
# Collect the entire response
full_response = ""
async for chunk in response_stream.body_iterator:
full_response += chunk
# Extract the Marp presentation content
marp_content = extract_data_from_tag(full_response, "marp_presentation")
# Replace image keywords
marp_content_with_images = replace_image_keywords(marp_content)
# Convert Markdown to HTML
html_content = convert_markdown_marp(marp_content_with_images, 'html')
if html_content:
return JSONResponse({
"markdown": marp_content_with_images,
"html": html_content.decode()
})
else:
raise HTTPException(status_code=500, detail="Failed to create presentation.")
# ============================================================================
# Main Execution
# ============================================================================
from fastapi.middleware.cors import CORSMiddleware
# CORS middleware setup
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:3000",
"https://www.elevaticsai.com",
"https://www.elevatics.cloud",
"https://www.elevatics.online",
"https://www.elevatics.ai",
"https://elevaticsai.com",
"https://elevatics.cloud",
"https://elevatics.online",
"https://elevatics.ai",
"https://pvanand-specialized-agents.hf.space"
],
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)