Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, HTTPException, Request, Query | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from typing import List, Dict, Any | |
from helper_functions_api import md_to_html, search_brave, fetch_and_extract_content, limit_tokens, together_response, insert_data | |
import os | |
from dotenv import load_dotenv, find_dotenv | |
from datetime import datetime, timedelta | |
from fastapi_cache import FastAPICache | |
from fastapi_cache.backends.inmemory import InMemoryBackend | |
from fastapi_cache.decorator import cache | |
import asyncio | |
import re | |
# Load environment variables from .env file | |
#load_dotenv("keys.env") | |
app = FastAPI() | |
async def startup(): | |
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache") | |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') | |
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY') | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
HELICON_API_KEY = os.getenv("HELICON_API_KEY") | |
SUPABASE_USER = os.environ['SUPABASE_USER'] | |
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD'] | |
# Groq model names | |
llm_default_small = "llama3-8b-8192" | |
llm_default_medium = "llama3-70b-8192" | |
# Together Model names (fallback) | |
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf" | |
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf" | |
SysPromptJson = "You are now in the role of an expert AI who can extract structured information from user request. Both key and value pairs must be in double quotes. You must respond ONLY with a valid JSON file. Do not add any additional comments." | |
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments." | |
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments." | |
SysPromptMd = "You are an expert AI who can create a structured report using information provided in the context from user request.The report should be in markdown format consists of markdown tables structured into subtopics. Do not add any additional comments." | |
prompt_user = {} | |
prompt_system = {} | |
prompt_user["online"] = {} | |
prompt_user["offline"] = {} | |
prompt_user["online"]["chat"] = "Write a well thought out, detailed and structured answer to the query:: {description} #### , refer the provided internet search results reference:{reference}" | |
prompt_user["online"]["report"] = "Write a well thought out, detailed and structured Report to the query:: {description} #### , refer the provided internet search results reference:{reference}, The report should be well formatted using markdown format structured into subtopics as necessory" | |
prompt_user["online"]["report_table"] = "Write a well thought out Report to the query:: {description},#### , refer the provided internet search results reference:{reference}. The report should be well formatted using markdown format, structured into subtopics, include tables or lists as needed to make it well readable" | |
prompt_user["offline"]["chat"] = "Write a well thought out, detailed and structured answer to the query:: {description}" | |
prompt_user["offline"]["report"] = "Write a well thought out, detailed and structured Report to the query:: {description}. The report should be well formatted using markdown format, structured into subtopics" | |
prompt_user["offline"]["report_table"] = "Write a detailed and structured Report to the query:: {description}, The report should be well formatted using markdown format, structured into subtopics, include tables or lists as needed to make it well readable" | |
prompt_system["online"] = """You are an expert AI who can create a detailed structured report using internet search results. | |
1 filter and summarize relevant information, if there are conflicting information, use the latest source. | |
2. use it to construct a clear and factual answer. | |
Your response should be structured and properly formatted using markdown headings, subheadings, tables, use as necessory. Ignore Links and references""" | |
prompt_system["offline"] = """You are an expert AI who can create detailed answers. Your response should be properly formatted and well readable using markdown formatting.""" | |
# sys_prompts = { | |
# "offline": { | |
# "Chat": "You are an expert AI, complete the given task. Do not add any additional comments.", | |
# "Full Text Report": "You are an expert AI who can create a detailed report from user request. The report should be in markdown format. Do not add any additional comments.", | |
# "Tabular Report": "You are an expert AI who can create a structured report from user request.The report should be in markdown format structured into subtopics/tables/lists. Do not add any additional comments.", | |
# "Tables only": "You are an expert AI who can create a structured tabular report from user request.The report should be in markdown format consists of only markdown tables. Do not add any additional comments.", | |
# }, | |
# "online": { | |
# "Chat": "You are an expert AI, complete the given task using the provided context. Do not add any additional comments.", | |
# "Full Text Report": "You are an expert AI who can create a detailed report using information scraped from the internet. You should decide which information is relevant to the given task and use it to create a report. The report should be in markdown format. Do not add any additional comments.", | |
# "Tabular Report": """You are an expert AI who can provide answers using internet search results. | |
# 1 filter and summarize relevant information, if there are conflicting information, use the latest source. | |
# 2. use it to construct a clear and factual answer. | |
# Your response should be properly formatted and well readable using markdown formatting. """, | |
# "Tables only": "You are an expert AI who can create a structured tabular report using information scraped from the internet. You should decide which information is relevant to the given task. The report should be in markdown format consists of only markdown tables. Do not add any additional comments.", | |
# }, | |
# } | |
class QueryModel(BaseModel): | |
topic: str = Query(default="", description="input query to generate Report") | |
description: str = Query(default="", description="additional context for report") | |
user_id: str = Query(default="", description="unique user id") | |
user_name: str = Query(default="", description="user name") | |
internet: bool = Query(default=True, description="Enable Internet search") | |
output_format: str = Query(default="report_table", description="Output format for the report", | |
enum=["chat", "report", "report_table"]) | |
data_format: str = Query(default="Structured data", description="Type of data to extract from the internet", | |
enum=["No presets", "Structured data", "Quantitative data"]) | |
async def generate_report(query: QueryModel): | |
query_str = query.topic | |
description = query.description | |
user_id = query.user_id | |
internet = "online" if query.internet else "offline" | |
user_prompt_final = prompt_user[internet][query.output_format] | |
system_prompt_final = prompt_system[internet] | |
data_format = query.data_format | |
optimized_search_query = "" | |
all_text_with_urls = [("", "")] | |
if query.internet: | |
search_query = re.sub(r'[^\w\s]', '', description).strip() | |
try: | |
urls, optimized_search_query = search_brave(search_query, num_results=8) | |
all_text_with_urls = fetch_and_extract_content(data_format, urls, optimized_search_query) | |
reference = limit_tokens(str(all_text_with_urls),token_limit=5000) | |
user_prompt_final = user_prompt_final.format(description=description, reference=reference) | |
except Exception as e: | |
print(e) | |
query.internet = False | |
print("failed to search/scrape results, falling back to LLM response") | |
if not query.internet: | |
user_prompt_final = prompt_user["offline"][query.output_format].format(description=description) | |
system_prompt_final = prompt_system["offline"] | |
md_report = together_response(user_prompt_final, model=llm_default_medium, SysPrompt=system_prompt_final) | |
if user_id != "test": | |
insert_data(user_id, query_str, description, str(all_text_with_urls), md_report) | |
references_html = {} | |
for text, url in all_text_with_urls: | |
references_html[url] = str(md_to_html(text)) | |
return { | |
"report": md_to_html(md_report), | |
"references": references_html, | |
"search_query": optimized_search_query | |
} | |
async def api_generate_report(request: Request, query: QueryModel): | |
return await generate_report(query) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"],) |