audio_chat / helper_functions_api.py
pvanand's picture
Update helper_functions_api.py
5909acd verified
raw
history blame
8.77 kB
# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
def md_to_html(md_text):
renderer = mistune.HTMLRenderer()
markdown_renderer = mistune.Markdown(renderer, plugins=[table])
html_content = markdown_renderer(md_text)
return html_content.replace('\n', '')
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2
from dotenv import load_dotenv, find_dotenv
# Load environment variables from .env file
load_dotenv("keys.env")
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
def insert_data(user_id, user_query, subtopic_query, response, html_report):
# Connect to your database
conn = psycopg2.connect(
dbname="postgres",
user=SUPABASE_USER,
password=SUPABASE_PASSWORD,
host="aws-0-us-west-1.pooler.supabase.com",
port="5432"
)
cur = conn.cursor()
insert_query = """
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
VALUES (%s, %s, %s, %s, %s, %s);
"""
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
conn.commit()
cur.close()
conn.close()
####-----------------------------------------------------END----------------------------------------------------------####
import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
from together import Together
llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"
SysPromptData = "You are an information retriever and summarizer, return only the factual information regarding the user query"
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY
#Additional instructions:
##Use the following search operators if necessory
OR #to cover multiple topics
* #wildcard to match any word or phrase
AND #to include specific topics."""
import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
def limit_tokens(input_string, token_limit=7500):
"""
Limit tokens sent to the model
"""
return encoding.decode(encoding.encode(input_string)[:token_limit])
together_client = OpenAI(
api_key=TOGETHER_API_KEY,
base_url="https://together.hconeai.com/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
groq_client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://groq.hconeai.com/openai/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
# Groq model names
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"
# Together Model names (fallback)
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf"
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf"
### ------END OF LLM CONFIG-------- ###
def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000):
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
params = {
"model": model,
"messages": messages,
"temperature": temperature,
"frequency_penalty": frequency_penalty,
"max_tokens": max_tokens
}
try:
response = groq_client.chat.completions.create(**params)
return response.choices[0].message.content
except Exception as e:
print(f"Error calling GROQ API: {e}")
params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium
response = together_client.chat.completions.create(**params)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
try:
return json.loads(text)
except:
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
# Use Fuzzy JSON loading
return loads(json_out)
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_text = [word for word in words if word.lower() not in stop_words]
return ' '.join(filtered_text)
def rephrase_content(data_format, content, query):
if data_format == "Structured data":
return together_response(
f"return only the factual information regarding the query: {{{query}}}. Output should be concise chunks of \
paragraphs or tables or both, using the scraped context:{{{limit_tokens(content)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
elif data_format == "Quantitative data":
return together_response(
f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
else:
return together_response(
f"return only the factual information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
class Scraper:
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"):
self.session = requests.Session()
self.session.headers.update({"User-Agent": user_agent})
@retry(tries=3, delay=1)
def fetch_content(self, url):
try:
response = self.session.get(url, timeout=2)
if response.status_code == 200:
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching page content for {url}: {e}")
return None
def extract_main_content(html):
if html:
plain_text = ""
soup = BeautifulSoup(html, 'lxml')
for element in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'table']):
plain_text += element.get_text(separator=" ", strip=True) + "\n"
return plain_text
return ""
def process_content(data_format, url, query):
scraper = Scraper()
html_content = scraper.fetch_content(url)
if html_content:
content = extract_main_content(html_content)
if content:
rephrased_content = rephrase_content(
data_format=data_format,
content=limit_tokens(remove_stopwords(content), token_limit=1000),
query=query,
)
return rephrased_content, url
return "", url
def fetch_and_extract_content(data_format, urls, query):
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
future_to_url = {
executor.submit(process_content, data_format, url, query): url
for url in urls
}
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
return all_text_with_urls
@retry(tries=3, delay=0.25)
def search_brave(query, num_results=5):
cleaned_query = re.sub(r'[^a-zA-Z0-9]+', '', query)
search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
cleaned_search_query = re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
brave = Brave(BRAVE_API_KEY)
search_results = brave.search(q=cleaned_search_query, count=num_results)
return [url.__str__() for url in search_results.urls],cleaned_search_query