Spaces:
Sleeping
Sleeping
| import os | |
| import torch # type: ignore | |
| import transformers # type: ignore | |
| from transformers import pipeline # type: ignore | |
| import streamlit as st # type: ignore | |
| from dotenv import load_dotenv # type: ignore | |
| import streamlit as st # type: ignore | |
| load_dotenv() | |
| # global variables | |
| model_name = "facebook/bart-large-cnn" | |
| task = "summarization" | |
| # torch cpu | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # huggingface pipeline | |
| summarizer = pipeline(task, model_name, framework='pt', device=device) | |
| # summary generator | |
| def generate_summary(text : str): | |
| response = summarizer(text, max_length = 100, min_length = 30) | |
| summary = response[0]['summary_text'] | |
| return summary | |
| # Streamlit App | |
| st.title('Summary Generator') | |
| st.subheader('Generate summary of any text you want') | |
| text = st.text_area(label = 'Text to analyse', placeholder = 'Write something...', max_chars = 2000) | |
| clicked = st.button('Generate Summary') | |
| progress_text = 'Generating summary...' | |
| if clicked: | |
| if text=="": | |
| st.caption('Pls provide some textual input') | |
| else : | |
| summary = generate_summary(text) | |
| st.caption('This is your summary') | |
| st.write(summary) | |