Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch # type: ignore
|
3 |
+
import transformers # type: ignore
|
4 |
+
from transformers import pipeline # type: ignore
|
5 |
+
import streamlit as st # type: ignore
|
6 |
+
from dotenv import load_dotenv # type: ignore
|
7 |
+
import streamlit as st # type: ignore
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# global variables
|
12 |
+
model_name = "facebook/bart-large-cnn"
|
13 |
+
task = "summarization"
|
14 |
+
|
15 |
+
# torch cpu
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
# huggingface pipeline
|
19 |
+
summarizer = pipeline(task, model_name, framework='pt', device=device)
|
20 |
+
|
21 |
+
|
22 |
+
# summary generator
|
23 |
+
def generate_summary(text : str):
|
24 |
+
response = summarizer(text, max_length = 100, min_length = 30)
|
25 |
+
summary = response[0]['summary_text']
|
26 |
+
return summary
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
# Streamlit App
|
31 |
+
st.title('Summary Generator')
|
32 |
+
st.subheader('Generate summary of any text you want')
|
33 |
+
|
34 |
+
text = st.text_area(label = 'Text to analyse', placeholder = 'Write something...', max_chars = 2000)
|
35 |
+
|
36 |
+
clicked = st.button('Generate Summary')
|
37 |
+
|
38 |
+
progress_text = 'Generating summary...'
|
39 |
+
|
40 |
+
if clicked:
|
41 |
+
if text=="":
|
42 |
+
st.caption('Pls provide some textual input')
|
43 |
+
else :
|
44 |
+
summary = generate_summary(text)
|
45 |
+
st.caption('This is your summary')
|
46 |
+
st.write(summary)
|