Spaces:
Paused
Paused
import os | |
import io | |
import asyncio | |
import socket | |
import requests | |
import sys | |
import logging | |
from fastapi import FastAPI, File, UploadFile, Form, BackgroundTasks | |
from fastapi.responses import FileResponse, StreamingResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from PIL import Image | |
import torch | |
from diffusers import ( | |
DiffusionPipeline, | |
AutoencoderKL, | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
StableDiffusionLatentUpscalePipeline, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionControlNetImg2ImgPipeline, | |
DPMSolverMultistepScheduler, | |
EulerDiscreteScheduler | |
) | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
from transformers import AutoFeatureExtractor, CLIPFeatureExtractor | |
import random | |
import time | |
import tempfile | |
import threading | |
logger = logging.getLogger(__name__) | |
# Set the logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) | |
logger.setLevel(logging.DEBUG) | |
file_handler = logging.FileHandler('inference.log') | |
stream_handler = logging.StreamHandler(sys.stdout) | |
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
# Set the formatter for the stream handler (command line) | |
stream_handler.setFormatter(formatter) | |
# Add the file handler and stream handler to the logger | |
logger.addHandler(file_handler) | |
logger.addHandler(stream_handler) | |
next_id = 0 | |
next_id_lock = threading.Lock() | |
class ImageGenerationQueue: | |
def __init__(self): | |
self.queue = asyncio.Queue() | |
self.queue_size = 0 | |
self.queue_lock = threading.Lock() | |
self.next_id = 0 | |
def add_task(self, task): | |
asyncio.run_coroutine_threadsafe(self._add_task(task), loop=asyncio.get_event_loop()) | |
async def _add_task(self, task): | |
await self.queue.put(task) | |
# Update queue size in a thread-safe manner | |
with self.queue_lock: | |
self.queue_size = self.queue.qsize() | |
async def process_queue(self): | |
while True: | |
task = await self.queue.get() | |
await task() | |
# Update queue size in a thread-safe manner | |
with self.queue_lock: | |
self.queue_size = self.queue.qsize() | |
self.queue.task_done() | |
async def get_total_queue_size(self): | |
# Return the queue size in a thread-safe manner | |
with self.queue_lock: | |
return self.queue_size | |
app = FastAPI() | |
queue_manager = ImageGenerationQueue() | |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" | |
# Initialize both pipelines | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16) | |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
BASE_MODEL, | |
controlnet=controlnet, | |
vae=vae, | |
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"), | |
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"), | |
torch_dtype=torch.float16, | |
).to("cuda") | |
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components) | |
# Sampler map | |
SAMPLER_MAP = { | |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
} | |
def center_crop_resize(img, output_size=(512, 512)): | |
width, height = img.size | |
# Calculate dimensions to crop to the center | |
new_dimension = min(width, height) | |
left = (width - new_dimension)/2 | |
top = (height - new_dimension)/2 | |
right = (width + new_dimension)/2 | |
bottom = (height + new_dimension)/2 | |
# Crop and resize | |
img = img.crop((left, top, right, bottom)) | |
img = img.resize(output_size) | |
return img | |
def common_upscale(samples, width, height, upscale_method, crop=False): | |
if crop == "center": | |
old_width = samples.shape[3] | |
old_height = samples.shape[2] | |
old_aspect = old_width / old_height | |
new_aspect = width / height | |
x = 0 | |
y = 0 | |
if old_aspect > new_aspect: | |
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) | |
elif old_aspect < new_aspect: | |
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) | |
s = samples[:,:,y:old_height-y,x:old_width-x] | |
else: | |
s = samples | |
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) | |
def upscale(samples, upscale_method, scale_by): | |
#s = samples.copy() | |
width = round(samples["images"].shape[3] * scale_by) | |
height = round(samples["images"].shape[2] * scale_by) | |
s = common_upscale(samples["images"], width, height, upscale_method, "disabled") | |
return (s) | |
# | |
def convert_to_pil(base64_image): | |
pil_image = processing_utils.decode_base64_to_image(base64_image) | |
return pil_image | |
def convert_to_base64(pil_image): | |
base64_image = processing_utils.encode_pil_to_base64(pil_image) | |
return base64_image | |
def inference( | |
control_image: Image.Image, | |
prompt: str, | |
negative_prompt = "sexual content, racism, humans, faces", | |
guidance_scale: float = 8.0, | |
controlnet_conditioning_scale: float = 1, | |
control_guidance_start: float = 1, | |
control_guidance_end: float = 1, | |
upscaler_strength: float = 0.5, | |
seed: int = -1, | |
sampler = "DPM++ Karras SDE", | |
#profile: gr.OAuthProfile | None = None, | |
): | |
try: | |
# Log input types and values | |
logger.debug("Input Types: control_image=%s, prompt=%s, negative_prompt=%s, guidance_scale=%s, controlnet_conditioning_scale=%s, control_guidance_start=%s, control_guidance_end=%s, upscaler_strength=%s, seed=%s, sampler=%s", | |
type(control_image), type(prompt), type(negative_prompt), type(guidance_scale), type(controlnet_conditioning_scale), | |
type(control_guidance_start), type(control_guidance_end), type(upscaler_strength), type(seed), type(sampler)) | |
logger.debug("Input Values: control_image=%s, prompt=%s, negative_prompt=%s, guidance_scale=%s, controlnet_conditioning_scale=%s, control_guidance_start=%s, control_guidance_end=%s, upscaler_strength=%s, seed=%s, sampler=%s", | |
control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, | |
control_guidance_start, control_guidance_end, upscaler_strength, seed, sampler) | |
start_time = time.time() | |
start_time_struct = time.localtime(start_time) | |
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct) | |
logger.info(f"Inference started at {start_time_formatted}") | |
# Rest of your existing code | |
control_image_small = center_crop_resize(control_image) | |
control_image_large = center_crop_resize(control_image, (1024, 1024)) | |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed | |
generator = torch.Generator(device="cuda").manual_seed(my_seed) | |
out = main_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=control_image_small, | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, | |
control_guidance_start=float(control_guidance_start), | |
control_guidance_end=float(control_guidance_end), | |
num_inference_steps=15, | |
output_type="latent" | |
) | |
upscaled_latents = upscale(out, "nearest-exact", 2) | |
out_image = image_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
control_image=control_image_large, | |
image=upscaled_latents, | |
guidance_scale=float(guidance_scale), | |
generator=generator, | |
num_inference_steps=20, | |
strength=upscaler_strength, | |
control_guidance_start=float(control_guidance_start), | |
control_guidance_end=float(control_guidance_end), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale) | |
) | |
end_time = time.time() | |
end_time_struct = time.localtime(end_time) | |
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct) | |
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s") | |
logger.debug("Output Types: generated_image=%s", type(None)) | |
logger.debug("Content of out_image: %s", out_image) | |
logger.debug("Structure of out_image: %s", dir(out_image)) | |
if not out_image.nsfw_content_detected[0]: | |
return out_image["images"][0] | |
else: | |
print("NSFW detected. Nice try.") | |
except Exception as e: | |
# Handle exceptions and log error message | |
logger.error("Error occurred during inference: %s", str(e)) | |
return str(e) | |
def generate_image_from_parameters(prompt, guidance_scale, controlnet_scale, controlnet_end, upscaler_strength, seed, sampler_type, image): | |
try: | |
# Save the uploaded image to a temporary file | |
temp_image_path = f"/tmp/{int(time.time())}_{image.filename}" | |
with open(temp_image_path, "wb") as temp_image: | |
temp_image.write(image.file.read()) | |
# Open the uploaded image using PIL | |
control_image_path = "scrollwhite.png" | |
control_image = Image.open(control_image_path) | |
# Call existing inference function with the provided parameters | |
generated_image, _, _, _ = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type) | |
# Save the generated image as binary data | |
output_image_io = io.BytesIO() | |
generated_image.save(output_image_io, format="PNG") | |
output_image_io.seek(0) | |
output_image_binary = output_image_io.read() | |
# Return the generated image binary data | |
return output_image_binary | |
except Exception as e: | |
# Handle exceptions and return an error message if something goes wrong | |
return str(e) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # You can replace ["*"] with specific origins if needed | |
allow_credentials=True, | |
allow_methods=["*"], # Allow all methods | |
allow_headers=["*"], # Allow all headers | |
) | |
async def get_image( | |
job_id: int = Form(...) | |
): | |
image_path = f"/tmp/{job_id}_output.png" | |
if os.path.isfile(image_path) is False: | |
return None | |
with open(image_path, "rb") as file: | |
generated_image = file.read() | |
# Save the generated image as binary data | |
output_image_io = io.BytesIO() | |
generated_image.save(output_image_io, format="PNG") | |
output_image_io.seek(0) | |
# Return the image as a streaming response | |
return StreamingResponse(content=output_image_io, media_type="image/png") | |
async def generate_image( | |
prompt: str = Form(...), | |
guidance_scale: float = Form(...), | |
controlnet_scale: float = Form(...), | |
controlnet_end: float = Form(...), | |
upscaler_strength: float = Form(...), | |
seed: int = Form(...), | |
sampler_type: str = Form(...), | |
image: UploadFile = File(...), | |
background_tasks: BackgroundTasks = BackgroundTasks() | |
): | |
async def generate_image_task(job_id): | |
global next_id_lock | |
global next_id | |
try: | |
# Save the uploaded image to a temporary file | |
temp_image_path = f"/tmp/{job_id}_{image.filename}" | |
with open(temp_image_path, "wb") as temp_image: | |
temp_image.write(image.file.read()) | |
# Open the uploaded image using PIL | |
control_image = Image.open(temp_image_path) | |
# Call existing inference function with the provided parameters | |
generated_image = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type) | |
if generated_image is None: | |
return "Failed to generate image" | |
output_image_path = f"/tmp/{job_id}_output.png" | |
with open(output_image_path, "wb") as output_image: | |
output_image.write(generated_image) | |
# # Save the generated image as binary data | |
# output_image_io = io.BytesIO() | |
# generated_image.save(output_image_io, format="PNG") | |
# output_image_io.seek(0) | |
# # Return the image as a streaming response | |
# return StreamingResponse(content=output_image_io, media_type="image/png") | |
except Exception as e: | |
logger.error("Error occurred during image generation: %s", str(e)) | |
return "Failed to generate image" | |
try: | |
with next_id_lock: | |
id = next_id | |
next_id += 1 | |
background_tasks.add_task(lambda _: generate_image_task(id)) | |
# queue_manager.add_task(lambda _: generate_image_task(id)) | |
position_in_queue = queue_manager.queue.qsize() | |
# Total queue size is still async | |
total_queue_size = await queue_manager.get_total_queue_size() # Implement this function | |
return {"job_id": id, "position_in_queue": position_in_queue, "total_queue_size": total_queue_size} | |
except Exception as e: | |
logger.error("Error occurred during image generation: %s", str(e)) | |
return "Failed to add task to the queue" | |
async def start_fastapi(): | |
# Get internal IP address | |
internal_ip = socket.gethostbyname(socket.gethostname()) | |
# Get public IP address using a public API (this may not work if you are behind a router/NAT) | |
try: | |
public_ip = requests.get("http://api.ipify.org").text | |
except requests.RequestException: | |
public_ip = "Not Available" | |
print(f"Internal URL: http://{internal_ip}:7860") | |
print(f"Public URL: http://{public_ip}:7860") | |
# Start processing the existing image generation queue | |
queue_processing_task = asyncio.create_task(queue_manager.process_queue()) | |
# Run FastAPI using hypercorn | |
config = uvicorn.Config(app="app:app", host="0.0.0.0", port=7860, reload=True) | |
server = uvicorn.Server(config) | |
await server.serve() | |
# Call the asynchronous function using asyncio.run() | |
if __name__ == "__main__": | |
queue_manager = ImageGenerationQueue() # Create the queue_manager instance here | |
asyncio.run(start_fastapi()) | |