cove / fine_tune_cove.py
prometheus04's picture
Update fine_tune_cove.py
3fd1ee1 verified
# Fine-tuning Code LLM with CoVe (Chain of Verification) on HuggingFace Spaces
# Implements Chain of Verification for better code reasoning and verification
import os
import torch
import numpy as np
import functools
import random
import json
from tqdm import tqdm
from typing import Dict, List, Any
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
TrainingArguments,
logging,
set_seed,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
)
from datasets import load_dataset, Dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel
from torch.utils.data import IterableDataset
from huggingface_hub import HfApi, login
# Login to HuggingFace
if os.getenv("HF_TOKEN"):
login(token=os.getenv("HF_TOKEN"))
# Model and dataset configuration
MODEL = "codellama/CodeLlama-7b-Instruct-hf" # Using instruct version for better CoVe performance
# Using multiple datasets for better CoVe training
DATASETS = [
"smangrul/hf-stack-v1", # Code repository data
"iamtarun/python_code_instructions_18k_alpaca", # Code instructions
"nickrosh/Evol-Instruct-Code-80k-v1", # Evolved code instructions
]
# CoVe-specific parameters
COVE_VERIFICATION_RATE = 0.7 # Proportion of samples that get verification steps
COVE_EXPLANATION_RATE = 0.8 # Proportion of samples that get explanations
# Training parameters optimized for CoVe
SEQ_LENGTH = 3072 # Longer sequences for verification chains
MAX_STEPS = 1500
BATCH_SIZE = 2 # Smaller batch for longer sequences
GR_ACC_STEPS = 8 # Higher accumulation
LR = 1e-4
LR_SCHEDULER_TYPE = "cosine"
WEIGHT_DECAY = 0.01
NUM_WARMUP_STEPS = 100
EVAL_FREQ = 150
SAVE_FREQ = 300
LOG_FREQ = 25
OUTPUT_DIR = "codellama-7b-cove-finetuned"
BF16 = True
FP16 = False
# LoRA parameters
LORA_R = 32 # Higher rank for complex reasoning
LORA_ALPHA = 64
LORA_DROPOUT = 0.1
LORA_TARGET_MODULES = "q_proj,v_proj,k_proj,o_proj,gate_proj,up_proj,down_proj"
# Quantization config
USE_NESTED_QUANT = True
BNB_4BIT_COMPUTE_DTYPE = "bfloat16"
SEED = 42
set_seed(SEED)
# CoVe prompt templates
COVE_TEMPLATES = {
"code_explanation": """<s>[INST] Explain the following code step by step, then verify your explanation:
Code:
{code}
Provide:
1. Step-by-step explanation
2. Verification of each step
3. Final summary [/INST]
## Step-by-step Explanation:
{explanation}
## Verification:
{verification}
## Summary:
{summary}</s>""",
"code_generation": """<s>[INST] {instruction}
Use Chain of Verification:
1. Generate the solution
2. Verify it works correctly
3. Check for edge cases
4. Provide final verified solution [/INST]
## Initial Solution:
{initial_solution}
## Verification Steps:
{verification_steps}
## Edge Case Analysis:
{edge_cases}
## Final Verified Solution:
{final_solution}</s>""",
"code_debugging": """<s>[INST] Debug the following code and explain your reasoning:
Code:
{buggy_code}
Problem: {problem_description}
Use verification to ensure your fix is correct. [/INST]
## Problem Analysis:
{analysis}
## Proposed Fix:
{fix}
## Verification:
{verification}
## Final Corrected Code:
{corrected_code}</s>""",
"code_review": """<s>[INST] Review this code and provide feedback:
{code}
Provide:
1. Initial assessment
2. Verify your observations
3. Specific improvement suggestions [/INST]
## Initial Assessment:
{assessment}
## Verification of Issues:
{verification}
## Improvement Suggestions:
{suggestions}</s>"""
}
class CoVeDataProcessor:
"""Processes various datasets into CoVe format"""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def create_code_explanation_sample(self, code_content: str) -> str:
"""Create a CoVe sample with code explanation and verification"""
# Extract meaningful code blocks (functions, classes)
lines = code_content.split('\n')
code_blocks = []
current_block = []
indent_level = 0
for line in lines:
if line.strip():
if (line.startswith('def ') or line.startswith('class ') or
line.startswith('async def ')):
if current_block:
code_blocks.append('\n'.join(current_block))
current_block = [line]
indent_level = len(line) - len(line.lstrip())
elif current_block:
current_block.append(line)
# End block if we return to original indent level
if line.strip() and (len(line) - len(line.lstrip())) <= indent_level:
if len(current_block) > 3: # Only keep substantial blocks
code_blocks.append('\n'.join(current_block))
current_block = []
if current_block and len(current_block) > 3:
code_blocks.append('\n'.join(current_block))
if not code_blocks:
return None
# Select a random code block
code_block = random.choice(code_blocks)
# Generate explanation, verification, and summary
explanation = self._generate_explanation(code_block)
verification = self._generate_verification(code_block, explanation)
summary = self._generate_summary(code_block)
return COVE_TEMPLATES["code_explanation"].format(
code=code_block,
explanation=explanation,
verification=verification,
summary=summary
)
def _generate_explanation(self, code: str) -> str:
"""Generate step-by-step explanation"""
lines = [line for line in code.split('\n') if line.strip()]
explanations = []
for i, line in enumerate(lines[:8]): # Limit to first 8 lines
line = line.strip()
if line.startswith('def '):
explanations.append(f"Step {i+1}: Define function with parameters")
elif line.startswith('class '):
explanations.append(f"Step {i+1}: Define class structure")
elif 'return' in line:
explanations.append(f"Step {i+1}: Return computed result")
elif '=' in line and not line.startswith('if'):
explanations.append(f"Step {i+1}: Variable assignment and computation")
elif line.startswith('if '):
explanations.append(f"Step {i+1}: Conditional logic check")
elif line.startswith('for ') or line.startswith('while '):
explanations.append(f"Step {i+1}: Loop iteration")
else:
explanations.append(f"Step {i+1}: Execute operation")
return '\n'.join(explanations)
def _generate_verification(self, code: str, explanation: str) -> str:
"""Generate verification steps"""
verifications = [
"✓ Syntax check: Code follows Python syntax rules",
"✓ Logic check: Each step follows logically from the previous",
"✓ Variable usage: All variables are properly defined before use",
"✓ Return value: Function returns appropriate type and value"
]
if 'def ' in code:
verifications.append("✓ Function definition: Parameters and return type are clear")
if 'for ' in code or 'while ' in code:
verifications.append("✓ Loop logic: Iteration bounds and exit conditions are correct")
if 'if ' in code:
verifications.append("✓ Conditional logic: All branches are handled appropriately")
return '\n'.join(verifications)
def _generate_summary(self, code: str) -> str:
"""Generate summary of the code"""
if 'def ' in code:
return "This function implements a specific algorithm with clear input/output behavior and proper error handling."
elif 'class ' in code:
return "This class defines a data structure with methods for manipulation and access."
else:
return "This code block performs a specific computational task with clear logic flow."
def create_instruction_sample(self, instruction: str, code: str) -> str:
"""Create CoVe sample from instruction-code pair"""
# Generate verification components
initial_solution = code
verification_steps = [
"1. Check syntax correctness",
"2. Verify logic flow",
"3. Test with sample inputs",
"4. Confirm output format"
]
edge_cases = [
"- Empty input handling",
"- Boundary value testing",
"- Type validation",
"- Error condition handling"
]
return COVE_TEMPLATES["code_generation"].format(
instruction=instruction,
initial_solution=initial_solution,
verification_steps='\n'.join(verification_steps),
edge_cases='\n'.join(edge_cases),
final_solution=code
)
class CoVeDataset(IterableDataset):
"""Dataset that generates CoVe-formatted training examples"""
def __init__(self, datasets, tokenizer, max_samples=10000, seq_length=3072):
self.datasets = datasets
self.tokenizer = tokenizer
self.max_samples = max_samples
self.seq_length = seq_length
self.processor = CoVeDataProcessor(tokenizer)
self.samples_generated = 0
def __iter__(self):
for dataset in self.datasets:
if self.samples_generated >= self.max_samples:
break
try:
ds = load_dataset(dataset, streaming=True, split='train')
for example in ds:
if self.samples_generated >= self.max_samples:
break
# Process based on dataset type
if 'content' in example:
# Repository code
cove_sample = self.processor.create_code_explanation_sample(
example['content']
)
elif 'instruction' in example and 'output' in example:
# Instruction-following dataset
cove_sample = self.processor.create_instruction_sample(
example['instruction'], example['output']
)
else:
continue
if cove_sample and len(cove_sample) > 100:
# Tokenize and create training example
tokenized = self.tokenizer(
cove_sample,
max_length=self.seq_length,
truncation=True,
padding=False,
return_tensors="pt"
)
if tokenized['input_ids'].shape[1] > 512: # Ensure substantial content
input_ids = tokenized['input_ids'].squeeze()
yield {
'input_ids': input_ids,
'labels': input_ids.clone(),
'attention_mask': tokenized['attention_mask'].squeeze()
}
self.samples_generated += 1
if self.samples_generated % 100 == 0:
print(f"Generated {self.samples_generated} CoVe samples")
except Exception as e:
print(f"Error processing dataset {dataset}: {e}")
continue
def setup_model_and_tokenizer():
"""Setup quantized model and tokenizer"""
print(f"Loading model: {MODEL}")
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# 4-bit quantization config
compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=USE_NESTED_QUANT,
)
# Load quantized model
model = AutoModelForCausalLM.from_pretrained(
MODEL,
quantization_config=bnb_config,
device_map="auto",
use_cache=False,
trust_remote_code=True,
torch_dtype=compute_dtype,
)
model = prepare_model_for_kbit_training(model)
return model, tokenizer
def setup_lora(model):
"""Setup LoRA configuration"""
peft_config = LoraConfig(
lora_alpha=LORA_ALPHA,
lora_dropout=LORA_DROPOUT,
r=LORA_R,
bias="none",
task_type="CAUSAL_LM",
target_modules=LORA_TARGET_MODULES.split(","),
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model
def prepare_cove_datasets(tokenizer):
"""Prepare CoVe training datasets"""
print("Preparing CoVe datasets...")
# Create training dataset
train_dataset = CoVeDataset(
DATASETS,
tokenizer,
max_samples=8000,
seq_length=SEQ_LENGTH
)
# Create smaller validation dataset
eval_dataset = CoVeDataset(
DATASETS,
tokenizer,
max_samples=1000,
seq_length=SEQ_LENGTH
)
return train_dataset, eval_dataset
def train_cove_model():
"""Main training function for CoVe"""
print("Setting up model and tokenizer...")
model, tokenizer = setup_model_and_tokenizer()
print("Setting up LoRA...")
model = setup_lora(model)
print("Preparing CoVe datasets...")
train_dataset, eval_dataset = prepare_cove_datasets(tokenizer)
# Data collator for language modeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
return_tensors="pt",
pad_to_multiple_of=8,
)
# Training arguments
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
dataloader_drop_last=True,
eval_strategy="steps",
save_strategy="steps",
max_steps=MAX_STEPS,
eval_steps=EVAL_FREQ,
save_steps=SAVE_FREQ,
logging_steps=LOG_FREQ,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
learning_rate=LR,
lr_scheduler_type=LR_SCHEDULER_TYPE,
warmup_steps=NUM_WARMUP_STEPS,
gradient_accumulation_steps=GR_ACC_STEPS,
gradient_checkpointing=True,
fp16=FP16,
bf16=BF16,
weight_decay=WEIGHT_DECAY,
push_to_hub=True,
hub_model_id=OUTPUT_DIR,
hub_strategy="every_save",
include_tokens_per_second=True,
remove_unused_columns=False,
report_to="tensorboard",
dataloader_num_workers=2,
)
print("Starting CoVe training...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
)
trainer.train()
trainer.save_model()
trainer.push_to_hub()
print("CoVe training completed!")
return model, tokenizer
def test_cove_inference(model_path=None):
"""Test CoVe inference"""
if model_path is None:
model_path = OUTPUT_DIR
print("Loading CoVe model for inference...")
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
MODEL,
quantization_config=None,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model = PeftModel.from_pretrained(base_model, model_path)
model = model.merge_and_unload()
def generate_with_cove(prompt, max_length=512):
model.eval()
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=0.3,
top_k=50,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Test CoVe reasoning
test_prompt = """<s>[INST] Explain the following code step by step, then verify your explanation:
Code:
def fibonacci(n):
if n <= 1:
return n
a, b = 0, 1
for i in range(2, n + 1):
a, b = b, a + b
return b
Provide:
1. Step-by-step explanation
2. Verification of each step
3. Final summary [/INST]"""
print("CoVe Test Prompt:")
print(test_prompt)
print("\n" + "="*80)
print("Generated CoVe Response:")
result = generate_with_cove(test_prompt)
print(result[len(test_prompt):])
if __name__ == "__main__":
print("Starting CoVe Fine-tuning Process...")
if os.getenv("SPACE_ID"):
print("Running in HuggingFace Spaces")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
else:
print("WARNING: No GPU available!")
# Train CoVe model
model, tokenizer = train_cove_model()
# Test CoVe inference
print("\n" + "="*80)
print("Testing CoVe Inference...")
test_cove_inference()