Spaces:
Runtime error
Runtime error
import io | |
import json | |
import os | |
import wave | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import List, Mapping, Optional, Sequence, Union | |
import numpy as np | |
import onnxruntime | |
from espeak_phonemizer import Phonemizer | |
_BOS = "^" | |
_EOS = "$" | |
_PAD = "_" | |
class PiperConfig: | |
num_symbols: int | |
num_speakers: int | |
sample_rate: int | |
espeak_voice: str | |
length_scale: float | |
noise_scale: float | |
noise_w: float | |
phoneme_id_map: Mapping[str, Sequence[int]] | |
class Piper: | |
def __init__( | |
self, | |
model_path: Union[str, Path], | |
config_path: Optional[Union[str, Path]] = None, | |
use_cuda: bool = False, | |
): | |
if config_path is None: | |
config_path = f"{model_path}.json" | |
self.config = load_config(config_path) | |
self.phonemizer = Phonemizer(self.config.espeak_voice) | |
self.onnx_options = onnxruntime.SessionOptions() | |
self.onnx_options.intra_op_num_threads = os.cpu_count() - 1 | |
self.model = onnxruntime.InferenceSession( | |
str(model_path), | |
sess_options=self.onnx_options, | |
providers=["CPUExecutionProvider"] | |
if not use_cuda | |
else ["CUDAExecutionProvider"], | |
) | |
def synthesize( | |
self, | |
text: str, | |
speaker_id: Optional[int] = None, | |
length_scale: Optional[float] = None, | |
noise_scale: Optional[float] = None, | |
noise_w: Optional[float] = None, | |
) -> bytes: | |
"""Synthesize WAV audio from text.""" | |
if length_scale is None: | |
length_scale = self.config.length_scale | |
if noise_scale is None: | |
noise_scale = self.config.noise_scale | |
if noise_w is None: | |
noise_w = self.config.noise_w | |
phonemes_str = self.phonemizer.phonemize(text, keep_clause_breakers=True) | |
phonemes = [_BOS] + list(phonemes_str) | |
phoneme_ids: List[int] = [] | |
for phoneme in phonemes: | |
phoneme_ids.extend(self.config.phoneme_id_map[phoneme]) | |
phoneme_ids.extend(self.config.phoneme_id_map[_PAD]) | |
phoneme_ids.extend(self.config.phoneme_id_map[_EOS]) | |
phoneme_ids_array = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0) | |
phoneme_ids_lengths = np.array([phoneme_ids_array.shape[1]], dtype=np.int64) | |
scales = np.array( | |
[noise_scale, length_scale, noise_w], | |
dtype=np.float32, | |
) | |
if (self.config.num_speakers > 1) and (speaker_id is not None): | |
# Default speaker | |
speaker_id = 0 | |
sid = None | |
if speaker_id is not None: | |
sid = np.array([speaker_id], dtype=np.int64) | |
# Synthesize through Onnx | |
audio = self.model.run( | |
None, | |
{ | |
"input": phoneme_ids_array, | |
"input_lengths": phoneme_ids_lengths, | |
"scales": scales, | |
"sid": sid, | |
}, | |
)[0].squeeze((0, 1)) | |
audio = audio_float_to_int16(audio.squeeze()) | |
# Convert to WAV | |
with io.BytesIO() as wav_io: | |
wav_file: wave.Wave_write = wave.open(wav_io, "wb") | |
with wav_file: | |
wav_file.setframerate(self.config.sample_rate) | |
wav_file.setsampwidth(2) | |
wav_file.setnchannels(1) | |
wav_file.writeframes(audio.tobytes()) | |
return wav_io.getvalue() | |
def load_config(config_path: Union[str, Path]) -> PiperConfig: | |
with open(config_path, "r", encoding="utf-8") as config_file: | |
config_dict = json.load(config_file) | |
inference = config_dict.get("inference", {}) | |
return PiperConfig( | |
num_symbols=config_dict["num_symbols"], | |
num_speakers=config_dict["num_speakers"], | |
sample_rate=config_dict["audio"]["sample_rate"], | |
espeak_voice=config_dict["espeak"]["voice"], | |
noise_scale=inference.get("noise_scale", 0.667), | |
length_scale=inference.get("length_scale", 1.0), | |
noise_w=inference.get("noise_w", 0.8), | |
phoneme_id_map=config_dict["phoneme_id_map"], | |
) | |
def audio_float_to_int16( | |
audio: np.ndarray, max_wav_value: float = 32767.0 | |
) -> np.ndarray: | |
"""Normalize audio and convert to int16 range""" | |
audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio)))) | |
audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value) | |
audio_norm = audio_norm.astype("int16") | |
return audio_norm | |