|
import numpy as np |
|
import onnxruntime |
|
|
|
import utils |
|
from text import text_to_sequence, sequence_to_text |
|
import torch |
|
import gradio as gr |
|
import soundfile as sf |
|
import tempfile |
|
import yaml |
|
|
|
def intersperse(lst, item): |
|
result = [item] * (len(lst) * 2 + 1) |
|
result[1::2] = lst |
|
return result |
|
|
|
|
|
def process_text(i: int, text: str, device: torch.device): |
|
print(f"[{i}] - Input text: {text}") |
|
x = torch.tensor( |
|
intersperse(text_to_sequence(text, ["catalan_cleaners"]), 0), |
|
dtype=torch.long, |
|
device=device, |
|
)[None] |
|
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device) |
|
x_phones = sequence_to_text(x.squeeze(0).tolist()) |
|
print(x_phones) |
|
return x.numpy(), x_lengths.numpy() |
|
|
|
MODEL_PATH_MATCHA_MEL="matcha_multispeaker_cat_opset_15.onnx" |
|
MODEL_PATH_MATCHA="matcha_hifigan_multispeaker_cat.onnx" |
|
MODEL_PATH_VOCOS="mel_spec_22khz.onnx" |
|
CONFIG_PATH="/home/jgiraldo/projects/tts-onnx-comparison/config_22khz.yaml" |
|
|
|
sess_options = onnxruntime.SessionOptions() |
|
model_matcha_mel= onnxruntime.InferenceSession(str(MODEL_PATH_MATCHA_MEL), sess_options=sess_options, providers=["CPUExecutionProvider"]) |
|
model_vocos = onnxruntime.InferenceSession(str(MODEL_PATH_VOCOS), sess_options=sess_options, providers=["CPUExecutionProvider"]) |
|
model_matcha = onnxruntime.InferenceSession(str(MODEL_PATH_MATCHA), sess_options=sess_options, providers=["CPUExecutionProvider"]) |
|
|
|
def vocos_inference(mel: torch.Tensor, config): |
|
|
|
with open(CONFIG_PATH, "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
params = config["feature_extractor"]["init_args"] |
|
sample_rate = params["sample_rate"] |
|
n_fft= params["n_fft"] |
|
hop_length= params["hop_length"] |
|
win_length = n_fft |
|
|
|
|
|
mag, x, y = model_vocos.run( |
|
None, |
|
{ |
|
"mels": mel.float().numpy() |
|
}, |
|
) |
|
|
|
|
|
spectrogram = mag * (x + 1j * y) |
|
window = torch.hann_window(win_length) |
|
|
|
|
|
pad = (win_length - hop_length) // 2 |
|
spectrogram = torch.tensor(spectrogram) |
|
B, N, T = spectrogram.shape |
|
|
|
print("Spectrogram synthesized shape", spectrogram.shape) |
|
|
|
ifft = torch.fft.irfft(spectrogram, n_fft, dim=1, norm="backward") |
|
ifft = ifft * window[None, :, None] |
|
|
|
|
|
output_size = (T - 1) * hop_length + win_length |
|
y = torch.nn.functional.fold( |
|
ifft, output_size=(1, output_size), kernel_size=(1, win_length), stride=(1, hop_length), |
|
)[:, 0, 0, pad:-pad] |
|
|
|
|
|
window_sq = window.square().expand(1, T, -1).transpose(1, 2) |
|
window_envelope = torch.nn.functional.fold( |
|
window_sq, output_size=(1, output_size), kernel_size=(1, win_length), stride=(1, hop_length), |
|
).squeeze()[pad:-pad] |
|
|
|
|
|
assert (window_envelope > 1e-11).all() |
|
y = y / window_envelope |
|
|
|
return y |
|
|
|
def tts(text:str, spk_id:int): |
|
sid = np.array([int(spk_id)]) if spk_id is not None else None |
|
text_matcha , text_lengths = process_text(0,text,"cpu") |
|
|
|
|
|
inputs = { |
|
"x": text_matcha, |
|
"x_lengths": text_lengths, |
|
"scales": np.array([0.667, 1.0], dtype=np.float32), |
|
"spks": sid |
|
} |
|
|
|
mel, mel_lengths = model_matcha_mel.run(None, inputs) |
|
|
|
wavs_vocos = vocos_inference(mel, CONFIG_PATH) |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp_matcha_vocos: |
|
sf.write(fp_matcha_vocos.name, wavs_vocos.squeeze(0), 22050, "PCM_24") |
|
|
|
|
|
|
|
inputs = { |
|
"x": text_matcha, |
|
"x_lengths": text_lengths, |
|
"scales": np.array([0.667, 1.0], dtype=np.float32), |
|
"spks": sid |
|
} |
|
wavs, wav_lengths = model_matcha.run(None, inputs) |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp_matcha: |
|
sf.write(fp_matcha.name, wavs.squeeze(0), 22050, "PCM_24") |
|
|
|
return fp_matcha_vocos.name, fp_matcha.name |
|
|
|
|
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;" |
|
> <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> |
|
TTS Catalan Comparison |
|
</h1> </div> |
|
</div> |
|
""" |
|
|
|
description = """ |
|
VITS2 is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. VITS2 improved the |
|
training and inference efficiency and naturalness by introducing adversarial learning into the duration predictor. The transformer |
|
block was added to the normalizing flows to capture the long-term dependency when transforming the distribution. |
|
The synthesis quality was improved by incorporating Gaussian noise into the alignment search. |
|
|
|
🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis |
|
|
|
Models are being trained in openslr69 and festcat datasets |
|
""" |
|
|
|
article = "Training and demo by BSC." |
|
|
|
vits2_inference = gr.Interface( |
|
fn=tts, |
|
inputs=[ |
|
gr.Textbox( |
|
value="m'ha costat desenvolupar molt una veu, i ara que la tinc no estaré en silenci.", |
|
max_lines=1, |
|
label="Input text", |
|
), |
|
gr.Slider( |
|
1, |
|
47, |
|
value=10, |
|
step=1, |
|
label="Speaker id", |
|
info=f"Models are trained on 47 speakers. You can prompt the model using one of these speaker ids.", |
|
), |
|
], |
|
outputs=[gr.Audio(label="Matcha vocos", interactive=False, type="filepath"), |
|
gr.Audio(label="Matcha", interactive=False, type="filepath")] |
|
) |
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
gr.TabbedInterface([vits2_inference], ["Multispeaker"]) |
|
gr.Markdown(article) |
|
|
|
demo.queue(max_size=10) |
|
demo.launch(show_api=False, server_name="0.0.0.0", server_port=7860) |
|
|